

Roll No.	 	

No. of Printed Pages: 2

DOON UNIVERSITY, DEHRADUN

End Semester Examination, December-2016

SEMESTER-I

MCA(Integrated): TMC-103[Digital Circuits & Systems]
MSc CS(Integrated): CSC-102[Digital Electronics & System Design]

Time	Allowed	3Hours	
i imo	Allowoor	SHOUPS	

Maximum Marks: 50

Note: Question paper is divided into three sections A, B & C. Marks distribution is given alongside. Follow the instruction as given in each section.

SECTION: A

Que-1

[Marks: 4*1=04]

- a) Draw the excitation table of J-K Flip-flop.
- b) Represent (25)₁₀ in Excess-3 Code.
- c) Represent the following signed number in 2's complement method:
 - i) + 25
- ii) -25
- d) There are 15 address lines in a RAM. How many addressable locations are to load data into it. If this memory can accommodate 4 byte Word in any addressable location, calculate the storage capacity of this RAM.

Que-2

[Marks: 3*2=06]

- a) Write Verilog and VHL Code for Full Adder.
- b) Convert (650.17)₈ into decimal, binary, base 4 and hexadecimal.
- c) What do you understand by Combinational Circuits and Sequential Circuits? Discuss in detail.

SECTION: B

[Marks: 5*4=20]

Que-3 Design 16:1 MUX using 4:1 MUX.

Que-4 Explain the operation of a 4 bit shift register.

TMC-103/CSC-102

Que-5 Convert the following:-

a) JK to D

b) JK to T

Que-6

a) Simplify the Boolean expression using Boolean algebra rules.

Y=A'BC+AB'C+ABC'+ABC

b) Express it is standard POS Form

Y=(A+B)(A+C)(B+C')

Que-7

- a) Design a full Adder using a decoder and additional gates.
- b) Discuss some Applications of flip flops and registers.

SECTION: C

Que-8 [Marks :2*5=10]

- a) What do you understand by Counters. Design the circuit diagram of 4-bit Ring-Counter
- b) Design a 4-bit binary comparator that accept inputs A and B and gives three outputs. G,E and L.
 - (i) Output G, when A<B
 - (ii) Output E, when A=B
 - (iii) Output L, when A>B

Que-9

[Marks:1*10=10]

Simplify using K-map, obtain minimal SOP equation and realize only by using NAND gates.

 $f(A, B, C, D) = \sum (1,2,3,8,9,10,11,14) + d(7,15)$