

DOON UNIVERSITY, DEHRADUN

End Semester Examination, 2016-17 School of Technology

Integrated M.C.A. (Semester III)

Course: STM - 518 Computer Based Numerical and Statistical Techniques

ime Allowed: 3Hours		Maxim	um Marks: 50
	SECTION A	•	(10 Marks)
1. What is the necessary co	ondition of Simpson's 3/8 ru	le?	[1]
2. What is the problem with	[1]		
3. How many roots can be	obtained by bisection meth-	od in a given int	erval? Explain why
is so.		•	[1]
4. What is the difference	e between Gauss's elimi	nation method	and Gauss-Jorden
elimination method?		٠.	[1]
-5. What is the role of step s	size 'h'-in-predictor-correcto	or-method?	[1]
6. What is the percentage e	error? What is the requireme	ent to estimate pe	ercentage error in ar
calculation?			[1]
7. Find the inverse of follows:	wing matrix using Gauss-Jo [5 2] [3-1]		[2]
	OR	\	
Explain with an example	how error gets propagated	in successive ca	lculations.
8. Find $\Delta^4 y_0$ for $e^x - x^2$ in the			[2]
	OB		
Find the root of $x^3 - \log x$	-1.05=0.	9	
	SECTION B		
Attempt any 4 of the follow	ving	(5×4=20 Marks)
9. Find the value of y at $x=0$	4.1 from following data:		
<u> </u>	0.1 0.01 0.00	3 4	5_
$y \mid 1$	0.1 0.01 0.00	0.0001 0.	00001

- 10. Evaluate $\int_{1}^{1.5} \frac{x}{x^2 2} dx$ using some suitable method. Find the result to 5 correct places of decimal.
- 11. Using Runge-Kutta method, solve the differential equation $\frac{dy}{dx} = x + x^2 y$ for x=0.25 with initial condition $x_0=0$ and $y_0=0$.
- 12. Derive Stirling's interpolation formula. Write down at least 5 terms.
- 13. Find the approximate polynomial corresponding to given data:

x	1.1	1.2	1.5	1.9	2.4
 	0.4	0.8	1.2	1.2	1.5

SECTION C

Attempt any 2 of the following

 $(10\times2=20 \text{ Marks})$

- 14. Explain Picard's successive approximation method to find the solution of differential equation $\frac{dy}{dx} = f(x, y)$ with given initial values x_0 and y_0 . Hence solve the equation $\frac{dy}{dx} y + x = 2.7$ such that y(0)=0.
- 15. Compare the results of the integral $I = \int_{0.15}^{1.05} \left(\frac{x^3 x}{3} + x^2 \right) dx$ by applying Simpson's 1/3 rule and 3/8 rule. Which one is accurate as compared to the actual result?
- 16. Find dy/dx at x=0.2 if $y=x \sin x$. Use Newton's forward formula for the calculation in the interval [0,1] with step size 0.2.

(End of the paper)