

Integrated MCA-I (Second Semester) End Semester Examination 2015-16 School of Technology, Doon University Dehradun Mathematics-II (STM-511)

Time: 03Hours	Total Marks: 50
Note: (i) Attempt ALL the questions. (ii) Do neat and clean work.	
Roll No	

Section A

Attempt ALL:

(1x10=10)

- 1. If $u = y^2$ then $\frac{\partial u}{\partial x}$ is: (i) xy^{x-1} , (ii)0, (iii) $y^x \log x$, (iv)none of these
- 2. If $u = tan^{-1}(x+y)$ then $(u_x u_y)$ equals: (i)0, (ii)1 (iii) 1, (iv)sinx cosy.
- 3. The conditions for f to be maximum is r < 0 and $rt s^2 > 0$ (True/False).
- **4.** The area bounded by the circle r = 4 is: (i)16 π , (ii)6 π , (iii) 5 π , (iv) π .
- 5. The minimum value of $\sqrt{(x^2+y^2)}$ is: (i)0, (ii) $\frac{1}{2}$ (iii) $-\frac{1}{2}$, (iv)1.
- 6. If a set A has n elements, how many relations are there from A to A?
- 7. The relation $\{(3,1), (2,2), (3,0), (1,1), (1,3)\}$ is a function (True/False).
- 8. The functions $f(x) = x^2$, where $0 \le x \le 2$, $g(y) = y^2$ where $3 \le y \le 10$ and $h(z) = z^2$ where $z \in R$, which of these functions are equal?
- 9. Describe the oneto one function by an example.
- 10. Which of the followings are posets?

(i)
$$(Z,=)$$
, $(ii)(Z,\neq)$, $(iii)(Z,>)$, $(iv)(Z,\geq)$

Section B

Attempt any FIVE:

(5x5=25)

- 1. Consider the divide relation on each of the following sets. Draw the Hasse diagram for each relation. Find, (a) All minimal and maximal element. (b) Greatest and least element. (i) S={2,3,5,30,60,120,180,360}, (ii) S={1,2,3,4,6,9}.
- 2. Let R be a relation from the set A= $\{1, 3, 4\}$ on itself and defined by $R = \{(1,1), (1,3), (3,3), (4,4)\}$ then write a matrix for R and also draw the diagraph of R.
- 3. Describe POSET and hence show that the relation ≥is a partial ordering set of integers, Z.
- **4.** If a mapping $f: A \to B$ is one to one and onto, then prove that inverse mapping $f^{-1}: B \to A$ is also one to one and onto.
- 5. Find the shortest distance between the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and $\frac{z+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$.
- 6. if u = f(y z, z x, x y), prove that $u_x + u_y + u_z = 0$.

Section C

Attempt ALL:

(5x5=25)

- 1. State Euler's theorem of homogeneous function and if u be homogeneous function than prove that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = n(n-1)u$.
- 2. Show that the mapping $f: R \to R$ be defined by f(x) = ax + b, where $a, b, x \in R$, $a \ne 0$ is invertible. Define its inverse.
- 3. If R be a relation in the set of integers Z defined by $R = \{(x,y): x \in Z, y \in Z, (x-y) \text{ is multiple of 3. Show that it is an equivalence relation. What is the equivalence class of 0. How many equivalence class are there?$
- 4. Let A={2,3,4,5}. The relation R and S on A defined by,
- R={(2,2), (2,3),(2,40, (2,5)(3,4),(3,5),(4,5), (5,3)} and S={(2,3), (2,5),(3, \$),(3,5),(4,2)(4,3)(4,5)(5,2), (5,5)}. Find the matrices of the above relations. Use the matrices to find the following composition of the relations R and S, (i) RoS, (ii) RoR, (iii)SoR.