

DOON UNIVERSITY, DEHRADUN

End Semester Examination, Second Semester, 2015-16 School of Physical Sciences MSc Physics

Course: PHP-453: Solid State Physics

Time Allowed: 3Hours

Maximum Marks: 50

Note: Attempt All Questions from Sections A, B, C.

SECTION: A

(Marks: $2 \times 10 = 20$)

- 1. The total binding (potential) energy of a system of atoms
- 2. How would you represent the potential experienced by an electron in a perfectly periodic one-dimensional crystal lattice with lattice constant 'a'?
- 3. Explain the terms (1) degeneracy (2) Fermi energy (3) Debye frequency.
- 4. Explain the resistivity of metals using Matthiessen's rule.
- 5. Differentiate between N-process and umclapp process.
- 6. Can a light beam be used in the analysis of crystal structure? Explain
- 7. There is a (011) plane in a unit cell of lithium (Li). Indicate the positions of all atoms lying in the plane. Represent atoms as 2-dimensional slices of space-filling spheres.
- 8. Draw $[\overline{1} \ 2 \ \overline{2}]$ and $(2\overline{1}0)$
- 9. The thermal conductivity of diamond is high. Explain.
- 10. Differentiate between effective mass of electron and free electron mass.

SECTION: B

(Marks: $4 \times 5 = 20$)

- 11. (a) Show that the reciprocal lattice to the reciprocal lattice is the real lattice.
 - (b) Calculate the volume for Na and Au in reciprocal space.
 - (c) Draw the first, second and third Brillouin zones of a square lattice
- 12. (a) What do you understand by tight binding approximation (TBA)? Based on TBA, explain the formation of band structures.
 - (b) Fermi energy of a certain metal M_1 is 5eV. A second metal M_2 has electron density which is 6% higher than that of mass M_1 . Assuming that free electron theory is valid for both the metals, calculate the Fermi energy for M_2 .
- 13. (a) Suppose that we allow the two masses M1 and M2 in a onedimensional diatomic lattice to become equal. What happens with the frequency gap?
 - (b) Determine the dispersion relation of phonons in a one-dimensional crystal with one atom per primitive cell. Also plot the relation.
- 14. (a) When laser light of wavelength falls on a metal scale with 1 mm engravings at a grazing angle of incidence, it is diffracted to form a vertical chain of diffraction spots on a screen kept perpendicular to the scale. If the wavelength of the laser is increased

by 200 nm. If the angle of the first-order diffraction spot is 5⁰, calculate the change in angle from first order diffraction.

- (b) A narrow beam of X-rays with wavelength 1.5 Å is reflected from an ionic crystal with an fcc lattice structure with a density of 3.32 gcm⁻³. The molecular weight is 108 AMU (1AMU = 1.66×10^{-24} g). Calculate the lattice constant.
- 15 (a) Explain the formation of forbidden bands using Kronig-Penney model.
 - (b) If the number density of a free electron gas in three dimensions is increased eight times, its Fermi temperature will
 - (a) Increase by a factor of 4 (b) decreases by a factor of 4 (c) increases by a factor of 8
 - (d) decrease by a factor of 8

SECTION: C

(Marks: 5X2 = 10)

- 16. (a) Why Einstein's model of specific heat failed at low temperature. How did it overcome by Debye's approximation?
 - (b) The Debye temperature of diamond is 2000K. Calculate the mean velocity of sound in diamond, given the density and atomic mass of diamond as 3500kg/m³ and 12 amu, respectively. If the interatomic spacing is 1.54Å, estimate the frequency of the dominant mode of lattice vibration.
 - (c) Draw E-K diagram using free electron theory and band theory of solids. Explain the diagram.
- 17. (a) Consider an ideal Fermi gas consisting of N relativistic spin 1/2 particles confined to a length L in one dimension at 0 K.

Find an expression for the density of states and hence calculate the Fermi energy of the gas.

(b) Find the mean energy per particle in terms of the Fermi Energy.