

DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, Second Semester, 2015-16 School of Physical Sciences

Generic Elective test paper of 5 Years (Integrated) MSc Programmes Course: PHC-453: Solid State Physics-I

Time Allowed: 2Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A,B,C.

SECTION: A

(Marks: $1 \times 6 = 6$)

- 1. For a cubic crystal lattice, what do the following represent?
 (a) <111> (b) [010] (c) (111) (d) {100}
- 2. Assuming iron sodium (Na) has a lattice parameter, a, of 0.287 nm, what is its atomic radius?
- 3. Name two types of non-directional bonding. What type of bonding is present in (a) Diamond (b) NaCl (c) H₂O
- **4.** What does the term polycrystalline mean? Draw the X-ray pattern for crystalline and amorphous materials.
- **5.** How many crystal systems are there? Write down the lattice parameters for tetragonal crystal structure.
- 6. Draw $[\frac{1}{2}, 1, 0]$ in (110).

SECTION: B

(Marks: 4 X 3=12)

- 7. What do you understand by Lennard Jones Potential? Explain the shape of a typical interatomic potential along with parameters A and B.
- 8. Cu crystallizes in a face centred cubic.
 - (a) Determine which X-ray reflections will be observed for Cu.
 - (b) Write down the extinction rule for the allowed reflections.
- 9. What is the family of planes {hkl} with an interplanar spacing of d = 1.246 Å in nickel (Ni) with a = 3.524 Å? Calculate the packing fraction of the face-centred cubic structure.

SECTION: C

(Marks: $6 \times 2 = 12$)

- 10. (a) Define the term reciprocal lattice and explain its relation to Bragg reflection.
 - (b) What is Brillouin Zone (BZ). Explain in detail about Ist, IInd and IIIrd BZ.
- 11. (a) Calculate the volume of unit cell for a hexagonal close packed structure in which the atom occupying the lattice points has radius of 1.6 Å.
 - (b) For Au, calculate the planar packing fraction (fractional area occupied by atoms) of the (110) plane and the linear packing density (atoms/cm) of the [100] direction. Given, $r = 4.05 \times 10^{-8}$ cm