

DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, Second Semester, 2015-16

School of Physical Sciences

2-Years MSc Program

Course: PHC-452: Quantum Mechanics II

Time Allowed: 2 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A, B, C.

SECTION: A

(Marks: 1 X 4 = 4)

- 1. With increasing quantum number, the energy difference between successive levels (A) Increases (B) Decreases (C) Remain the same (D) None of the above
- 2. The lowest possible energy for a particle in a potential box is 2 eV. The next highest energy the particle can have is
 - (A) 4 eV (B) 8 eV (C) 16 eV (D) 32 eV
- 3. The existence of zero point energy for a linear harmonic oscillator is a consequence of
 - (A) Pauli exclusion principle (B) Special theory of relativity
 - (C) Matter waves (D) Uncertainty principle
- 4. The degree of degeneracy of the energy level $\frac{38\hbar^2\pi^2}{2\text{ma}^2}$ of the particle in a cubical potential box of side a is

(A) 6 (B) 9 (C) 3 (D) 12

SECTION: B

(Marks: $4 \times 4 = 16$)

- 5. Consider a charged particle q in a one dimensional harmonic oscillator potential of frequency ω . Suppose we turn on a weak electric field (E), so that the potential energy is shifted by an amount H' = -qEx. Calculate first and second order correction in energy levels.
- 6. Prove that the selection rules for orbital quantum number l and magnetic orbital quantum number m for one electron atom is $\Delta l = \pm 1$ and $\Delta m = 0, \pm 1$.
- 7. Write down the exact energies and wave functions of the ground states for the infinite cubic potential well $V(x, y, z) = \begin{cases} 0 & \text{if } 0 < x < L, 0 < y < L, 0 < z < L, \\ \infty & \text{otherwise} \end{cases}$

Now add the following perturbation to the infinite cubic well

$$Hp = V_0 L^3 \delta(x - L/4) \delta(y - 3L/4) \delta(z - L/4)$$

Using the first order perturbation theory, calculate the energy of the ground state.

8. Find ground state energy for one dimensional harmonic oscillator using the variational principle.

SECTION: C

(Marks: 5 X 2 = 10)

- 9. Use the variational method to calculate the ground state energy of *He* atom.
- 10. State the WKB approximation and show that the probability of finding a particle at any point is inversely proportional to its momentum. Prove that the transmission probability of a scattering particle from rectangular barrier with a bumpy top is

$$T \cong e^{-2\gamma}$$
, with $\gamma = \frac{1}{\hbar} \int_{0}^{a} |p(x)| dx$.