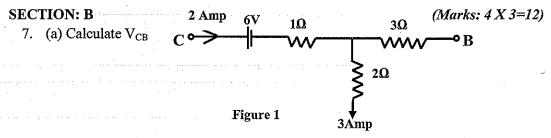


DOON UNIVERSITY, DEHRADUN

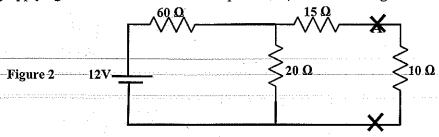
Mid Semester Examination, Second Semester, 2015-16 School of Physical Sciences

Core Physics test paper of 5 Years (Integrated) MSc Programmes Course: PHC-151: Electricity & Magnetism (Elective)

Time Allowed: 2Hours


Maximum Marks: 36

Note: Attempt All Questions from Sections A, B, C.


SECTION: A

(Marks: $1 \times 6 = 6$)

- 1. Define an ideal voltage source.
- 2. The dielectric constant of water is 80. Calculate its electrical permittivity.
- 3. By saying that the electrostatic field is conservative, we do not mean that
 - (a) It is the gradient of a scalar function $(\nabla . V)$ (b) Its circulation is identically zero
 - (c)The work done in a closed path inside the field is zero (d) The potential difference between any two points is zero
- 4. Which of the following is not a source of magnetostatic fields?
 - (a) current in a wire (b) A permanent magnet (c) an accelerated charge (d) a charged disk rotating at uniform speed
- 5. The dielectric constant of a polar dielectric (a) higher (b) smaller (d) same as that of a non polar molecule.
- 6. The unit of magnetic flux density is the weber. (True or False)

- (b) What is Ampere's Law? Apply the law for calculating the magnetic field for a toroid, with the direction of the magnetic field.
- 8. What is impedance of a series R, L and C circuit and discuss serial resonance.
- 9. By applying Thevenin's theorem across points AB, calculate voltage across 10 Ω Resistor.

10. Apply uniqueness theorem for conductors. Differentiate between Poisson's and Laplace equation. How does Poisson's equation behave for a conductor?

SECTION: C

(Marks: 6 X 2=12)

- 11. Solve the following parts:
- (a) The potential of a certain charge configuration is expressed by $V = 5x + 10y^2 + 2yz$. Find the electric field intensity at (5, 2, 1).
- (b) Show that the force between two charges separated by a distance is reduced by a $\frac{1}{1+P/\epsilon_0 E}$ due to presence of a dielectric.
- (c) A test charge q= 3.2 x 10⁻¹⁹ C is moving with linear velocity v = (2i+2j) m/s in a combined electric and magnetic field of intensity E= (3i+6j+k) N/C and B = (2j+3k) T, respectively. Calculate the force experience by the test charge.
- (d) Explain the method of images briefly. A point charge +q is placed in front of an infinite conducting plane connected to earth. Determine the electrical potential at any point near the conducting plane using method of images.
- (e) Explain the behaviour of a dielectric material when it is placed in a uniform electric field between the two plates of a capacitor.