

### DOON UNIVERSITY, DEHRADUN

# Mid Semester Examination, Fourth Semester, 2015-16 School of Technology

Class: Integrated M.C.A.

Course: Operational Research

Course Code: STM-525

Time Allowed: 2Hours

Maximum Marks: 30

Note: Attempt all four questions in Section A.Each question carries 1.5 marks.

Attempt any three questions in Section B. Each question carries 4 marks.

Attempt any two questions in Section C. Each question carries 6 marks.

#### SECTION: A

(Very Short Answer Type Questions)

(Marks:4X1.5=6)

- 1. Define the following terms
  - (i) Simplex
  - (ii) Basic feasible solution
  - (iii) Hyperplane
- 2. Use graphical method to solve the problem:

Maximize 
$$Z=5x_1+3x_2$$
  
Subjected to:  $4x_1+5x_2 \leq 10$   
 $5x_1+2x_2 \leq 10$   
 $3x_1+8x_2 \leq 12$   
 $x_1,x_2 \geq 0$ 

3. Write the dual of the linear programming problem

Minimize 
$$Z = 2x_1 + 3x_2 + 4x_3$$
  
Subjected to:  
$$2x_1 + 2x_2 + 3x_3$$

$$2x_1 + 2x_2 + 3x_3 \le 4$$

$$3x_1 + 4x_2 + 5x_3 \ge 5$$

$$x_1 + x_2 + x_3 = 7$$

$$x_1, x_2, x_3 \ge 0$$

4. Prove that the dual of the dual is primal.

#### SECTION: B

(Short Answer Type Questions)

(Marks: 3X4=12)

- 1. Show that  $S = \{(x_1, x_2, x_3): x_1^2 + x_2^2 + x_3^3 \le 1\} \subset \mathbb{R}^3$  is a convex set.
- 2. Use Simplex method to solve the following LPP:

Minimize 
$$Z = 5x_1 + 3x_2$$
  
Subjected to:  $4x_1 + 5x_2 \le 10$   
 $5x_1 + 2x_2 \le 10$   
 $3x_1 + 8x_2 \le 12$   
 $x_1, x_2 \ge 0$ 

3. Use Dual-simplex method to solve the following LPP:

Minimize 
$$Z = -x_1 - 4x_2 + 3x_3$$
  
Subjected to:  $2x_1 + x_2 - 6x_3 = 20$   
 $6x_1 + 5x_2 + 10x_3 \le 76$   
 $8x_1 - 3x_2 + 6x_3 \le 50$   
 $x_1, x_2, x_3 \ge 0$ 

4. Solve the following minimal assignment problem:

|     |       | IVIAN |    |     |    |  |  |  |
|-----|-------|-------|----|-----|----|--|--|--|
|     |       | 1     | 2  | 3   | 4  |  |  |  |
|     | I     | 12    | 30 | 21  | 15 |  |  |  |
|     | II    | 18    | 33 | 9   | 31 |  |  |  |
| Job | III . | 44    | 25 | 24  | 21 |  |  |  |
|     | ***   |       | 20 | 0.0 |    |  |  |  |

#### **SECTION: C**

#### (Long Answer Type Questions)

(Marks: 2X6=12)

1. (a) Solve the following L.P.P. using Big-M method. (4+2)

Minimize 
$$Z = 2x_1 + x_2$$
  
Subjected to:  $3x_1 + x_2 = 3$   
 $4x_1 + 3x_2 \ge 6$   
 $x_1 + 2x_2 \le 3$   
 $x_1, x_2 \ge 0$ 

- (b) Discuss the effect on the optimal solution of question 1(a) when the vector b is changed from  $(3,6,3)^T$  to  $(5,5,3)^T$ .
- 2. Solve the following L.P.P. using Two-Phase method

Maximize 
$$Z=4x_1+x_2$$
  
Subjected to: $2x_1+x_2\leq 6$   
 $x_1+2x_2\leq 5$   
 $x_1+x_2\geq 1$   
 $x_1+4x_2\geq 2$   
 $x_1,x_2\geq 0$ 

3. Solve the following transportation problem to maximize profit

## Profit(Rs.)/Unit Destination

|        |    |    | The second second second second second | and the second second second second | and the second and a second as a second as a second |
|--------|----|----|----------------------------------------|-------------------------------------|-----------------------------------------------------|
| Origin | 1  | 2  | <b>3</b> # - 24                        | 4                                   | Supply                                              |
| A      | 40 | 25 | 22                                     | 33                                  | 100                                                 |
| : B    | 44 | 35 | 30                                     | 30                                  | 30                                                  |
| C      | 38 | 38 | 28                                     | 30.                                 | 70                                                  |
| Demand | 40 | 20 | 60                                     | 30                                  |                                                     |
|        |    |    |                                        |                                     |                                                     |