

DOON UNIVERSITY, DEHRADUN

End Semester Examination, IV Semester, 2024

Academic Year 2023-24 (Even Semester)

School of Physical Sciences

Department of Mathematics

Programme: BSc Mathematics

Course Code with Title: MAG 251: Numerical Methods. (Generic)

Time Allowed 2 Hours

Maximum Marks: 50

1. All questions are compulsory.

2. Use of Scientific calculator is allowed.

SECTION: A [5x3=15M]

- **Q1.** Find the root of the equation $\cos x = xe^x$ using bisection method correct to three decimal places
- **Q2.** Prove that $\left(E^{\frac{1}{2}} + \frac{1}{E^{\frac{1}{2}}}\right) (1 + \Delta)^{\frac{1}{2}} = 2 + \Delta$
- Q3. Show that the divided differences are symmetrical in their arguments.
- Q4. Under what conditions the Stirling's and Bessel's interpolation formulas gives best estimates.
- **Q5.** Find the real root of the equation $\cos x = 3x 1$ correct to 2 decimal places using iteration method.

SECTION: B [3x5=15M]

- **Q6.** Given $\frac{dy}{dx} = x y^2$, y(0.2) = 0.02. Find y(0.4) by modified Euler's method correct to 3 decimal places, taking h = 0.2.
- Q7. Using Lagrange's interpolation formula find y(10) from the following table

x	5	6	9	11
f(x)	12	13	14	16

Q8. Find by Newton Raphson method, the real root of equation $3x = \cos x + 1$ correct to four decimal places.

OR

Find a real root of the equation $x = e^{-x}$ using the Newton-Raphson method correct to four decimal places.

SECTION: C [2x10=20M]

$$27x + 6y - z = 85,$$

 $x + y + 54z = 110,$

$$6x + 15y + 2z = 72$$

using Gauss-Seidel method correct to three decimal places

OR

Solve by Jacobi's iteration method correct to two decimal places

$$10x + y - z = 11.19$$

$$x + 10y + z = 28.08$$

$$-x + y + 10z = 35.61$$

Q10 Solve the equation $\frac{dy}{dx} = x + y$ with initial condition y(0) = 1 by Runge-Kutta from x = 0 to x = 0.2, h = 0.1