

DOON UNIVERSITY, DEHRADUN

End Semester Examination, IV Semester, 2024

Academic Year 2023-24 (Even Semester)

School of Physical Sciences D

Department of Mathematics

Programme: BSc Mathematics

Course Code with Title: MAC 251: Numerical Methods.

Time Allowed 2 Hours

Maximum Marks: 50

- 1. All questions are compulsory.
- 2. Use of Scientific calculator is allowed.

SECTION: A [5x3=15M]

Q1. Find
$$\Delta^{10}(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$$
.

Q2. Prove
$$\Delta = \frac{1}{2}\delta^2 + \delta \sqrt{1 + \frac{\delta^2}{4}}$$

Q3. Find the function whose first difference is e^x .

Q4. Find the missing term in the following table

x	0	1	2	3	4
f(x)	1	3	9		81

Q5. Given that
$$y = 2x^3 - 3x^2 + 3x - 10$$
 find $\Delta^3 y$

SECTION: B [3x5=15M]

Q6. Solve the equation $\frac{dy}{dx} = 1 - y$ with the initial condition y(0) = 0 using Euler's method at x = 0.1, 0.2, 0.3.

Q7. Find the value of sin 52 from the given table

θ°	45°	50°	55°	60°
$\sin \theta$	0.7071	0.7660	0.8192	0.8660

Q8. Find the value of f(x) at point x = 4. Given that

x	1.5	3	6
f(x)	-0.25	2	20

OR

Using Lagrange's interpolation formula find y(10) from the following table

x	5	6	9	11
f(x)	12	13	14	16

SECTION: C [2x10=20M]

 $\mathbf{Q9.}$ Reservoir discharging water through sluices at a depth h below the water surface has a surface area A for various values of h as given below:

h(in meters)	10	11	10	T	
A(in sq.meters)	0.50	11	12	13	14
	100	1070	1200	1350	1520
If t denotes tin			1200	1330	1330

If t denotes time in minutes, the rate of fall of the surface is given by

$$\frac{dh}{dt} = -\frac{48}{A}\sqrt{h}$$

Estimate the time taken for the water level to fall from 14 to 10 m above the sluices.

Find f'(1.1) and f''(1.1) from the following table

1	1.2	11.4	16	1.0	
(x) 0	0.1200	0.5-	1.0	1.8	2
	0.1280	0.5540	1.2960	2.4320	_

Q10. Given $\frac{dy}{dx} = y - x$, y(0) = 2. Find y(0.1) and y(0.2) by Runge-Kutta method correct to four decimal places.