

DOON UNIVERSITY, DEHRADUN

End Semester Examination, IInd Semester, 2024 Academic Year 2023-24 (Even Semester)

School of Technology, Department Name - Computer Science & Engineering Programme Name - B.Sc.(Hons with Research) CS, IVth Semester Course Code with Title: CSC252 - Numerical & Statistical Computing

Time Allowed 2.00 Hours

Maximum Marks: 30

SECTION: A

(Each question carry 3 marks)

1. Evaluate the value of y for x = 1925. The values of y are given below for different values of x using Newton Backward Interpolation.

X	1891	1901	1911	1921	1931
У	46	66	81	93	101

2. Determine the solution for y when x = 2.2. Here, different values of y are given below for different values of x using Gauss Forward Interpolation.

х	1	2	3	4
у	1	8	27	64

SECTION: B

(Each question carry 4 marks)

- 1. Integrate $\int_{0}^{6} x^{2}dx$ using Trapezoidal Rule, Simpson ½ Rule and Weddle's Rule for six iterations.
- 2. Find the approximate solution of y for x = 0.2 for a single iteration where y(0) = 0 and $f(x,y) = x+y^2$ using Runge Kutta Order 4 method.

3. Find the solution for f'''(3) where y have different values for different values of x which are shown below:

х	2	4	6
у	7		18

SECTION: C Attempt any two questions (Each question carry 6 marks)

- 1. Given y(20) = 512, y(30) = 439, y(40) = 346, y(50) = 243, find y(35) using Stirling's method.
- 2. Find y(0.2) for $y' = -xy^2$, y(0) = 1, with step length 0.1 using the Modified Euler Method.
- 3. Find solution using Newton Divided Difference method for x = 2.7 where some values of y are given below for values of x:

X	2	2.5	3
у	0.7	0.9	1.1