

End Semester Examination 2024 Department of Computer Science, School of Technology DOON UNIVERSITY, DEHRADUN B.Tech. (Computer Science),

Course: PHG 153, Electrical Circuit Analysis

Time allowed - 2 hours

Max.Marks-30

General Instructions

- This question paper contains three sections A, B, and C.
- Section A contains 5 question 2 mark each
- · Section B Contains 4 question 3 mark each
- · Section C contains 2 question 4 mark each.
- Attempt all question.

Section A

 $5 \times 2 = 10$

- 1. Define a two-port network and provide one example of where it is used?
- 2. A power source with a Thevenin equivalent resistance of 10 ohms is connected to a load resistor. What value should the load resistor have to achieve maximum power transfer?
- 3. Derive the expression for the power delivered to the load in a circuit with a source having an internal resistance R_s and the load resistance R_L.
- 4. Calculate the total impedance of a series RC circuit with R=10 ohms and $C=100\mu F$ when connected to a 50 Hz AC source.
- 5. Explain Tellegen's Theorem and illustrate its application

Section B

 $4 \times 3 = 12$

- 6. Determine the current in a series RC circuit with R=5 ohms and C=50μF connected to an AC source with a peak voltage of 20V and frequency of 60 Hz.
- In a series RLC circuit with R=5 ohms, L=0.2 H, and C=50 μF, determine the quality factor Q and the bandwidth.
- 8. Write the comparison between Series and Parallel Resonance
- 9. Define the following terms for an A.C. signal:
 - (1) Peak Value

(2) Average Value

(3) R.M.S value

(4) Power factor

Section C

 $2 \times 4 = 8$

10. An alternating e.m.f. E= E₀ e^{jwt} is applied to a circuit having resistance R, inductance L and capacitance C in series. Find the expression for the current in the circuit. Discuss the condition under which the current and applied voltage are in same phase.

- 11. An alternating potential of 50 volts (r.m.s.) at 50 c/s is applied to a circuit having a resistance of 5 ohms, an inductance of 80 mH and a capacitor id 100 uF connected in series. Calculate
 - (i) The impedance of the circuit
 - (ii) The voltage drops across each element of the circuit
 - (iii) The current at resonance

Or

12. Describe the different parameters used to characterize a two-port network and provide the equations relating the input and output variables for each set of parameters.