

DOON UNIVERSITY, DEHRADUN

Final Examination, 2024

Academic Year 2023-24 (Even Semester)

School of Technology

Department Name: Computer Science

Programme Name: B.Sc. (Hons)

Semester: 4

Course Name: Design and Analysis of Algorithms(724113)

Code: CSC-253

Time Allowed 2.00 Hours

Maximum Marks: 30

Note: Attempt all questions.

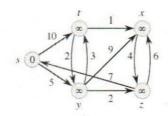
SECTION: A

Q1. Very Short answer question (Any four)

(4X2=8)

- a) What are lower bound arguments? Name the methods used for Lower bound analysis.
- b) What is Branch and Bound Technique? Write any two differences between Backtracking and Branch and Bound.
- c) Define Intractability. Draw the vein diagram showing relationship between P, NP, NP complete and NP hard problems.
- d) Define Decision tree. How it can be used to find Lower bound Arguments?
- e) Define MST problem. Name any two solutions to this problem.

SECTION: B


Q2. Short Answer question. (Any four)

(4X3=12)

- a) What is Cook's theorem? According to this theorem, how an NP Complete problem can be reduced to SAT problem?
- b) What is Backtracking? Draw the complete tree to solve a 4-queen problem.
- c) Solve the 0/1 knapsack problem using Dynamic Programming.

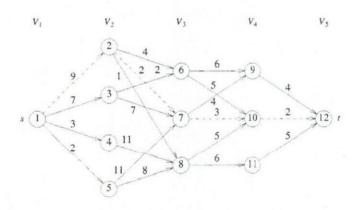
$$P = \{20,15,30,5,25\}, W = \{1,2,2,1,3\}, m=6$$

- d) How Dynamic programming can be used to solve Matrix chain multiplication problem? Write all the three steps including recursive solution (only mathematical expression).
- e) Find Single source shortest path for the following graph. (source=s)

Q2. Long answer question. (Any two)

(5X2=10)

a) Write an algorithm to solve fractional knapsack problem using Greedy method. Calculate the optimal profit for the following problem:-


M = 50

i	1	2	3	4	5	
W_{i}	5	10	15	10	20	
Pi	25	30	60	100	40	

b) What are Optimal Binary Search trees? How they can be used for making Huffman codes? Generate the codes for the following data.

Letter	frequency(%)		
A	60		
В	15		
C	10		
D	14.5		
E	0.5		

c) What is the optimal solution for the following multistage Graph:-

