

DOON UNIVERSITY, DEHRADUN

End Semester Examination, II Semester, 2024

Academic Year 2023-24 (Even Semester)

School of Physical Science Department Name: Mathematics

Programme Name: Integrated M.Sc.

Course Code with Title: MAC-153, Group Theory-1

Time Allowed 2.00 Hours

of G.

group $G = \{1, -1\}$

Maximum Marks: 50

SECTION: A I. Attempt all questions: (10 marks) a. In a finite group G, if H is the only subgroup of its order, then prove that H is a normal subgroup of G. (2) **b.** Find the order of (8,4,10) in the group $Z_{12} \oplus Z_{60} \oplus Z_{24}$. (1) c. Find the maximum possible order of any element in S_{15} (1) **d.** Find the order of $3+<6>in^{Z_{18}}/<6>$: (1) **e.** Let G = (R, +). Define $\emptyset: G \to G$ by $\emptyset(x) = x^3, \forall x \in G$. Check if \emptyset is a homomorphism. Justify your answer. (2) f. Define the following terms: i. Normalizer of an element of a group G. ii. External direct product of a finite number of groups. (1) if G is a group and H is a subgroup of index 2 in G, then prove that H is a normal subgroup of G. (2) SECTION: B 11. Attempt any five: (5X4=20 marks) a. prove that centre of a group is a normal subgroup of the group. **b.** What is an Alternating group. Show that $A_n \leq S_n$. **c.** Describe the structure of S_5 . For the following permutations $\sigma \& \tau \in S_9$, write $\sigma \tau$ as the product of disjoint cycles: $\sigma = (23415)(4768)$; $\tau = (4397)(15274)$ **d.** If in a group G, $a^5 = e$, $aba^{-1} = b^2$ for $a, b \in G$ then show that O(b)=31. e. Let N be a normal subgroup G and H a subgroup of G. Then show that NH is a subgroup

f. Show that the additive group Z of all integers is homomorphic to the multiplicative

SECTION: C

II.	Attempt any two:		
a.	7	2X10=20 p under s is cyclic?	
b.	 (ii). f: (G, +) → (G',*), f(x) = 2^x. Show that f is a homomorphism. (i). Prove that a homomorphism Ø of a group is injective iff kerØ =< e>. (ii). Determine all homomorphism from Z₂₀ to Z₂₀. 	(3)	(7)(6)
c.	(i). Define factor group. Let N Δ G and H< G, containing N. then show that $H/N < 0$ (ii) Draw the Cayley table for $S_3/((123))$.	< G/N. (5)	

