

DOON UNIVERSITY, DEHRADUN

End Semester Examination, 2nd Semester, 2024 Academic Year 2023-24 (Even Semester) School of Physical Science, Department Physics Programme Name: B. Sc. Honors with Research 2nd Sem Course Code: Electrical Circuit Analysis (PHC 153)

Time Allowed 2.0 Hours

Maximum Marks: 30

Note: All questions are compulsory and marks are indicated in front of each section.

SECTION: A

(Very Short Answer Type Questions; $1 \times 6 = 6$)

Q1. Q-factor for resonance RLC series circuit

A.
$$\frac{1}{R}\sqrt{\frac{C}{L}}$$

C.
$$\frac{1}{R}\sqrt{\frac{L}{C}}$$

D.
$$R\sqrt{\frac{c}{L}}$$

Q2. Relationship between rms value and peak value of an AC voltage

A.
$$V_{rms} = 0.707V_r$$

B.
$$V_p = 0.707 V_{rms}$$

C.
$$V_{rms} = V_p$$

A.
$$V_{rms} = 0.707V_p$$

B. $V_p = 0.707V_{rms}$
C. $V_{rms} = V_p$
D. None of the above

Q3. Conversion of radians in degrees

A. Radians =
$$\left(\frac{\pi}{180^{\circ}}\right)$$
 × degrees

A. Radians =
$$\left(\frac{\pi}{180^{\circ}}\right)$$
 × degrees

B. Radians = $\left(\frac{180^{\circ}}{\pi}\right)$ × degrees

C. Radians = $\left(\frac{22}{\pi}\right)$ × degrees

D. Radians = $\left(\frac{\pi}{22}\right)$ × degrees

C. Radians =
$$\left(\frac{22}{\pi}\right)$$
 × degrees

D. Radians =
$$\left(\frac{\pi}{22}\right)$$
 × degrees

Q4. Condition of resonance for any series RLC circuit

A.
$$X_L > X_C$$

B.
$$X_1 < X_2$$

$$C. X_I = X_C$$

A.
$$X_L > X_C$$

B. $X_L < X_C$
C. $X_L = X_C$
D. None of the above

Q5. Value of inductive reactance X_L

- A. $2\pi f L$
- B. fL
- C. $2\pi f$
- D. $\frac{2\pi L}{f}$

Q6. An AC series circuit has a resistance of 10 Ω , an impedance of 0.2 H and a capacitance of 60 μ F. Then resonant frequency of the given circuit

- A. 20 Hz
- B. 46 Hz
- C. 64 Hz
- D. 26 Hz

SECTION: B

(Short Answer Type Questions; 4×3=12)

- Q1. Define peak amplitude, peak to peak value, time period, cycle, frequency for sinusoidal AC voltage along with its characteristics.
- Q2. What are the advantages of AC over DC.
- Q3. Explain the transient response of series RL circuit for DC excitation.
- Q4. Draw a wave and phasor diagrams for purely resistive, inductive and capacitive AC circuits.

SECTION: C

(Long Answer Type Questions; 2×6=12)

- Q1. State and prove superposition theorem for any electrical network.
- Q2. For any series RLC circuit derive the expression for impedance and phase angle. Also explain the condition for resonance, bandwidth and quality factor for the same circuit.