

DOON UNIVERSITY, DEHRADUN

Final Semester Examination, B.Sc. Ist Semester, December, 2023 School of Physical Sciences, Department of Chemistry NEP Chemistry

Course Code: CYG-101: Atomic Structure, Chemical Binding and Volumetric analysis

Time Allowed 2 Hours		Maximum Marks: 30	
Note:	All Questions are compulsory		
	SECTION: A	10 Marks	
1.	In silicates, the oxygen atom forms a tetrahedral vovoid is 0.22. The radius of oxide is 1.4 Å. Find out	oid. The limiting radius ratio for tetrahedra	
2.		rite the Kapustinskii's equation and its importance?	
3.	Explain the different types of chemical forces found in the molecule?		
4.	Write the electronic configuration of As, Pb, I and Cs?		
5.			
6.			
7.	Write the increasing order of electronegativity of SP ³ , SP ² and SP hybrid orbitals?		
8.			
9.			
10	. Calculate the lattice energy of NaCl from the data:		
	A=1.456, r=3.12 Å, n=4		
	SECTION: B	10 Marks	
1.	Write the different postulates of Fajan rule and explain why HgCl ₂ is more covalent than CaCl ₂ ?		
2.	Explain the different stoichiometric defects found in solids with example?		
3.	What is ionic bond? And write the different characteristics and properties of ionic bonds?		
4.	Explain the hybridisation, geometry and bond angle of IF ₇ , CO ₃ ²⁻ and PCl ₅ ?		
5.	Calculate the bond order of N ₂ , B ₂ , NO and O ₂ ⁺ d explain their diamagnetic and paramagnetic characteristics?		
	SECTION: C	10 Marks	
1.	Explain the molecular orbital theory (MOT) and draw the molecular orbital diagram of H-F and CO molecule? and calculate the bond order and their magnetic behaviour?		
2.	Define the lattice energy. Derive Born Lande equation and give its importance?		

141000

.