

DOON UNIVERSITY, DEHRADUN UTTARAKHAND, INDIA End-term Examination, Academic Year: 2022-2023(Even Semester), Department of Phys. /Chem. /Comp. Science -Under Department of Mathematics, School of Physical Sciences, Academic Programme: Integrated M.Sc. 1st Year, 2nd semester Course code and Paper title: MAG-15d Generic Mathematics (Econometrics).

Time Allowed: 3Hours

Maximum Marks: 50

Note: Attempt all six questions in Section A. Each question carries 2 marks.

Attempt any four questions in Section B. Each question carries 6 marks.

Attempt any two questions in Section C. Each question carries 12 marks.

SECTION: A (Very Short Answer Type Questions)

(Marks:6X2=12)

- 1. Write short note on linearity in the variables and linearity in the parameters.
- 2. Write Gauss Markov theorem.
- 3. Explain the followings: Dummy variables and Forecasting.
- 4. Explain the terms of population regression function (PRF), and sample regression function, (SRF).
- 5. What is the difference between the stochastic error term and the residual, \hat{u}_i ?
- 6. Write the formulas for partial correlation coefficients for three variable linear model.

SECTION: B (Short Answer Type Questions)

(Marks: 4X6=24)

- 7. (i). Find the mean and variance of normal distribution.
 - (ii). Show that the area under the normal curve is one.
- 8. Explain the following: (i) the coefficient of determination. (ii) The measure of 'goodness of fit'.
- 9. (i). Given $\sum \hat{u}_i^2 = 9.83$, n = 12, $\sum (Y_i \bar{Y})^2 = 105.118$, find r^2 .
 - (ii). Compute the student t for the following values in a sample of 8:-4,-2,-2, 0, 2, 2, 3,
 - 3. Also test whether sample is taken from the population with mean $\mu=0$.

Given: at 5% level of significance, $t_{tabulated\ value} = 1.96$.

- **10.** Prove the following: Let $k_i = \frac{x_i}{\sum x_i^2}$. then (i). $\sum k_i = 0$; (ii). $\sum k_i^2 = \frac{1}{\sum x_i^2}$.
- 11. Determine whether the following models are linear in the parameters, or the variables, or both. Which of these models are linear regression models?

Model	Descriptive Title				
$a.Y_i = \beta_1 + \beta_2 \ln X_i + u_i$	Semilogarithmic				
b. $\ln Y_i = \ln \beta_1 + \beta_2 \ln X_i + u_i$	Logarithmic or double logarithmic				
c. $\ln Y_i = \beta_1 - \beta_2 (1/X_i) + u_i$	Logarithmic reciprocal				

SECTION: C (Long Answer Type Questions)

(Marks: 2X12=24)

- 12.(i). Explain the assumptions underlying the method of least squares, in the classical linear regression model.
 - (ii). Describe ordinary least square (OLS) method for a data $(X_i, Y_i), I = 1, 2, \dots n$, to fit in Linear model.
- 13.Write short note on the multiple coefficient of Determination , R^2 , and adjusted multiple coefficient of Determination \bar{R}^2 . When $\sum e_i{}^2 = 13.704$ and $\sum y_i{}^2 = 1634$, n = 10, and k = 3 calculate the value of multiple coefficient of Determination , R^2 , and adjusted multiple coefficient of Determination \bar{R}^2 .
- 14. Following table gives the bushels of corn per acre, Y, resulting from the use of various amounts of fertilizer X_1 , and insecticides X_2 both in pounds per acre, from 1971 to 1980.

Year	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
Υ	40	44	46	48	52	58	60	68	74	80
X ₁	6	10	12	14	16	18	22	24	26	32
X ₂	4	4	5	7	9	12	14	20	21	24

Find the estimators \hat{b}_1 , \hat{b}_2 , \hat{b}_0 , and three variable linear regression model.