

DOON UNIVERSITY, DEHRADUN

Department of Mathematics, School of Physical Sciences Final Semester Examination, ODD Semester 2023-2024

Class: 1	B.Sc	(Honours/	with	Research) Math	ematics
----------	------	-----------	------	----------	--------	---------

Course: Logic Sets and Special functions

Time Allowed: 2 Hours

Semester: 1

Course Code: MAC-103

Max Marks: 50

Note: Attempt all questions in Section A. Each question carries 2 marks.

Attempt all questions in Section B. Each question carries 5 marks.

Attempt any Two questions in Section C. Each question carries 10 marks.

Section: A

(Very Short Answer Type Questions)

Attempt all Five questions.

 $[5 \times 2 = 10 \text{Marks}]$

- 1. If p is true and q is false, find the truth values of the following:
 - (a) $\sim (p \rightarrow \sim q)$
- (b) $(p \land q) \rightarrow (p \lor q)$ $(c) \sim (p \land q) \lor \sim (q \rightarrow p)$
- (d) $(p \to q) \lor \sim (p \leftrightarrow \sim q)$

- 2. Fill in the blanks
 - (a) A _____ is an ordered collection of objects.
 - (b) The set of positive integers is _____
 - (c) If A has m elements and B has n elements, then $A \times B$ has elements ____
 - (d) Every set is a _____ of itself

Multiple Choice Questions:

- 3. If A is not equal to B, then the Cartesian product
 - $A)A \times B$ not equal $B \times A$
 - B) is not possible
 - $C)A \times B > B$ or E < A
 - D) None of the above
- 4. The relation $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$ on set $A = \{1,2,3\}$ is
 - A) Reflexive but not Symmetric
 - B) Reflexive but not Transitive
 - C) Symmetric and Transitive
 - D) Neither symmetric nor Transitive
- 5. If R = (1, 1), (2, 3), (4, 5), then domain of the function is
 - A) Dom $R = \{2, 3, 4, 5\}$
 - B) Dom $R = \{1, 1, 4, 5\}$
 - C) Dom $R = \{1, 3, 5\}$
 - D) Dom $R = \{1, 2, 4\}$

Section: B

(Short Answer Type Questions)

Attempt all four questions.

 $[4 \times 5 = 20 \text{ Marks}]$

- 6. Define converse, inverse and contrapositive of conditional statement. Also show their truth table . Write converse, inverse and contrapositive of the following:
 - (a) Indian team wins whenever match is played in Kolkata Home town of Ganguly.
 - (b) If 3y 2 = 10, then x = 1.
 - (c) If two angles are congruent, then they have the same measure.
- 7. Associative composition of relation: Let A, B, C and D be sets. Suppose R is a relation from A to B and S be a relation from B to C and T be a relation from C to D. Then show that,

$$(RoS)oT = Ro(SoT)$$

- 8. (i) Given that $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from Ato B: $R = \{(1, y), (1, z), (3, y), (4, z), (4, z)\}$
 - (a) Determine the matrix of the relation.
 - (b) Draw the arrow diagram of R.
 - (c) Find the inverse relation R^{-1} of R. (d) Determine the domain and range of R.
 - (ii) Let $A = \{1, 2, 3, 4, 5, 6\}$ and let R be the relation on A defined by "x divides y".
 - (a) Write R as a set of ordered pairs.
 - (b) Draw it digraph.
 - (c) Find the inverse relation R^{-1} of R.
- 9. In a survey, it is found that 21 people read English newspaper, 26 people read Hindi newspaper, and 29 people read regional language newspaper. If 14 people read both English and Hindi newspapers; 15 people read both Hindi and regional language newspapers; 12 people read both English and regional language newspaper and 8 read all types of newspapers, find:
 - (i) How many people were surveyed?
 - (ii) How many people read only regional language newspapers?

Section: C

(Long Answer Type Questions)

Attempt any Two questions.

 $[2 \times 10 = 20 \text{ Marks}]$

- 10. Define the equivalence relation in detail. If R is relation on the set of integers such that $(a, b) \in \mathbb{R}$ iff 3a + 4b = 7n for some integer. Prove that R is an equivalence relation.
- 11. If $f: A \to B$ and $g: B \to C$ be one-one and onto function then prove that gof is one-one and onto and Show that $(gof)^{-1} = f^{-1}og^{-1}$

12. Using the principle of mathematical induction, product
$$1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2n-1)(2n+1) = \frac{1}{3}n(4n^2 + 6n - 1).$$