

DOON UNIVERSITY, DEHRADUN

End Semester Examination

Academic Year 2023-24(odd Semester)

School of Physical Science, Department Name: Chemistry

Programme Name: B.Sc. Hons. (with Research), 3rd Semester Course Code with Title: CYC-203 (713113)

Physical Chemistry III: Phase Equilibrium and chemical Kinetics

Time	e Allowed 2.00 Hours Date: 16.12.23 Maximum Marks:	30
	SECTION: A (Very Short Answer Type Questions)	
1.	For $3A \Rightarrow 2B$, rate of reaction $+ d[B]/dt$ is equal to	[1]
	a) $-3/2 d[A]/dt$ b) $-2/3 d[A]/dt$	
	c) $-1/3 d[A]/dt$ d) $+2d[A]/dt$	
2	The half-life period of a first order chemical reaction is 6.93 minutes. The time red	luired
	for the completion of 99% of the chemical reaction will be:	[1]
	a) 230.3 minutes b) 23.03 minutes	
	c) 46.06 minutes d) 406.6 minutes	
3	If the initial concentration of the reactant is doubled, time for half reaction is also	Ħ
	doubled; the order of reaction is:	
	a) zero b) first	
	c) second d) third ·	
1		
4	An increase in the concentration of the reactants of a reaction leads to change in	[1]
3	a) heat of reaction	
	b) threshold energy	
\hat{V}_{i}^{2}	c) collision frequency	
	d) activation energy	
5	In a steady state approximation the assumption is	[1]
	a) the flow of reactants occur at constant speed	
	b) the temperature do not alter the rate of reaction	
	c) the concentration of the intermediates is constant	
	d) the concentration of the intermediates are zero	
6	State the phase rule.	[1]
	SECTION: B (Short Answer Type Questions)	
7	Explain general acid catalysis.	[3]
	Dapian gonora acia camyoto.	[2]
8:	a) Explain collision theory of bimolecular reactions.	2+1]

- b) Under what conditions the distribution law is valid?
- The following mechanism has been proposed for the pyrolysis of methane: [3]

$$k_1$$
 $CH_4 \rightarrow *CH_3 + H^*$
 k_2
 $CH_4 + *CH_3 \rightarrow C_2H_6 + H^*$
 k_3
 $CH_4 = *H \rightarrow *CH_3 + H_2$

 $*CH_3 + *H + M \rightarrow CH_4 + M$

Assuming the steady state approximation for H* and *CH3, derive the rate law for the formation of C₂H₆.

- Derive the rate law expression for the chemical reaction, 2O₃ →3O₂ which proceeds as follows: [3]
 - a) $O_3 \rightarrow O_2 + O$. (Fast)
 - b) $0 + 0_3 \rightarrow 20_2$ (slow)

SECTION: C (Long Answer Type Questions)

- Derive the rate law for enzyme catalysed reaction. [4]
- The rate of the following reaction in aqueous solution is monitored by measuring the number of moles of Hg₂Cl₂ that precipitate per litre per min. The data obtained are listed in the table. [4]

 $2\mathrm{HgCl}_2(\mathrm{aq}) + \mathrm{C}_2\mathrm{O}_4{}^2\text{-}(\mathrm{aq}) \rightarrow 2\mathrm{Cl}^2\ (\mathrm{aq}) + 2\mathrm{CO}_2 + \mathrm{Hg}_2\mathrm{Cl}_2\ (\mathrm{s})$

 /[HgCl2], M
 [C2O42], M
 rate, mol/L/min

 0.105
 0.15
 1.8×10^{-5}

 0.052
 0.15
 9×10^{-6}

 0.052
 0.30
 7.2×10^{-5}

- a) Determine the order of reaction with respect to HgCl₂, with respect to C₂O₄²⁻ and overall order.
- b) Calculate the rate constant for the above reaction.
- Discuss the kinetics of parallel reactions. [4]