

DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, Second Semester, 2017-18

School of Physical Sciences

Physics Core

Course: PHC-15: Wave and Optics

Time Allowed: 3Hours		Maximum Marks: 30	
Note: Attempt All Questions from Sec	ctions A, 3 question	s for section B and 2 questions	
from section C.			
SECTION: A Attempt all questi	ons	(Marks: 1 X 6=6)	
1. Which of the following is an entirel	y longitudinal wave	?	
(a) Water wave			
(b) Sound wave			
(c) Electromagnetic wave			
(d) A wave in a stretched string	g		
The main factor which affects the sp			
(a) amplitude of the sound wave (b) intensity o		ensity of the sound wave	
(c) loudness of the sound wave			
3. A particle moves on the x-axis acco	rding to the equatio	$n x = A + B \sin \omega t$. The motion is a	
SHM with amplitude,	/ \	(1) 1.2	
		$(d) \sqrt{A^2 + B^2}$	
4. For a wave propagating in a mediur	n, identify the prope	erty that is independent of the	
others.	- \ Γ	d) All those demand on each other	
(a) Velocity (b) Wavelengths (c			
 As a wave travels into a medium in (a) decreases (b) Increases 	(c) remains the sam	e	
6. The Laplace's correction in the exp	ression for the veloc	city of sound given by Newton is	
needed because sound waves:			
(a) Are longitudinal		(b) Propagate isothermally	
(c) Propagate adiabatically	(d) Are of lon	ng wavelengths	
SECTION: B Attempt any 3 question	ns.	(Marks 4X3=12)	
		Obtain the expression for total	

mechanical energy of the particles executing SHM. Draw the graph for potential energy and kinetic energy of a linear oscillator as the function of time.

- (ii) Certain radar emits 9400-MHz radio waves in groups 0.08 μs in duration. The time needed for these groups to reach a target, be reflected and return back to the radar is indicative of the distance of the target. The velocity of these waves, like
 - a) wavelength of these waves,
 - b) length of each wave group, which governs how precisely the radar can measure distances of the target, and
 - c) number of waves in each group

other electromagnetic waves is c= 3 x 108 m/s. Find

2. (i) Two collinear SHM acting simultaneously on a particle are given by,

 $X_1 = A1 \cos \omega t$

 $X_2 = A2 \cos(\omega t + \phi)$

Show that the resultant motion of the particles is SHM. Also obtain the expression for the amplitude and phase constant of the resultant motion in terms of A_1 , A_2 and ϕ .

(ii) Two SHMs are represented by the equations,

 $Y_1 = 10 \sin (3t + \pi/4)$

 $Y_2 = 5 \left(\sin 3t + \cos 3t \right)$

What is the ratio of their amplitudes?

- 3. (i) Deduce the formula for the longitudinal waves in a uniform rod.
 - (ii) Calculate the velocity of sound in (a) water and (b) steel. Given the density of steel = 7800 kgm^{-3} , Young's modulus of steel = $20 \times 10^{10} \text{Nm}^{-2}$ and bulk modulus of water = $0.20 \times 10^{10} \text{ Nm}^{-2}$.
- 4. (i) Define the term wave velocity, wavelength and frequency. How they are related?
 - (ii) What are transverse and longitudinal waves? Give one example of each. Obtain an equation for the displacement of a plane harmonic wave travels in a medium in positive x-direction.

SECTION: C Attempt any two questions

- (Marks: 6X2=12)
- (i) Obtain the equation of motion for two mutually perpendicular oscillations having same frequencies. Consider the cases when,
 - (a) The two component SHMs are in phase, $\phi = 0$
 - (b) The two component SHMs are out of phase, $\phi = \pi$
 - (c) The phase difference between the two component SHMs, $\phi = \pi/2$
 - (ii) A particle of mass 0.2 kg undergoes SHM according to the equation:
 - $x(t) = 3 \sin(\pi t + \pi/4)$ (t is in second and x is in meter)
 - (a) What is the amplitude of oscillation?
 - (b) What is the time period of oscillation?
 - (c) What is the initial value of x?
- 2. (i) Deduce the expression for the velocity of longitudinal waves in a column of a gas and hence obtain the Newton's formula. What is Laplace's correction to Newton's formula?
 - (ii) Show that characteristic impedance of a string to transverse wave is $Z = \sqrt{\mu T}$.
- 3. (i) What is standing wave? Derive the equation that describes a standing wave on a string of length L fixed rigidly at both ends. Describes the modes of vibrations.
 - (ii) State the characteristic features which distinguish a standing wave from travelling wave.