DOON UNIVERSITY, DEHRADUN

Department of Mathematics, School of Physical Sciences Mid Semester Examination, Even Semester 2017-18

Class: M.Sc.Mathematics

Course: Linear Programming Problem

Time Allowed: 2 Hours

Semester: II

Course Code: MAC-455

Max Marks: 30

Note: Attempt all Three questions in Section A. Each question carries 2 marks. Attempt any Three questions in Section B. Each question carries 4 marks.

Attempt any Two questions in Section C. Each question carries 6 marks.

Section: A

(Very Short Answer Type Questions)

Attempt all Three questions

 $[3 \times 2 = 6 \text{ Marks}]$

1. Use Graphical method for solving the following LPP:

Maximize
$$Z = -x_1 + 2x_2$$

Subject to:
$$-x_1 + 3x_2 \le 10$$
; $x_1 + x_2 \le 6$; $x_1 - x_2 \le 2$; $x_1, x_2 \ge 0$.

2. Write the dual of the linear programming problem(LPP):

Maximize
$$Z = x_1 + x_2 + x_3$$

Subject to:
$$x_1 - 3x_2 + 4x_3 = 5$$
; $x_1 - 2x_2 \le 3$; $2x_2 - x_3 \ge 4$, $x_1, x_2 \ge 0$, x_3 is unrestricted.

3. Solve the following game using dominance property:

Section B

(Short Answer Type Questions)

Attempt any Three questions

 $[3\times4=12 \text{ Marks}]$

4. Use Simplex method to solving the following LPP:

Maximize
$$Z = 5x_1 + 3x_2$$

Subject to:
$$x_1 + x_2 \le 2$$
; $5x_1 + 2x_2 \le 10$; $3x_1 + 8x_2 \le 12$; $x_1, x_2 \ge 0$.

5. Solve the following LPP using Two-Phase method:

Maximize
$$Z = 6x_1 + 4x_2$$

Subject to:
$$2x_1 + 3x_2 \le 30$$
; $3x_1 + 2x_2 \le 24$; $x_1 + x_2 \ge 3$; $x_1, x_2 \ge 0$.

6. Solve the following LPP using Dual-Simplex method:

Minimize
$$Z = -x_1 - 4x_2 + 3x_3$$

Subject to:
$$2x_1 + x_2 - 6x_3 = 20$$
; $6x_1 + 5x_2 + 10x_3 \le 76$; $8x_1 - 3x_2 + 6x_3 \le 50$; $x_1, x_2, x_3 \ge 0$.

7. Solve the following assignment problems:

Section C

(Long Answer Type Questions)

Attempt any Two questions

 $[2 \times 6 = 12 \text{ Marks}]$

8. Solve the following LPP using Big-M method:

Minimize
$$Z = 2x_1 + x_2$$

Subject to:
$$3x_1 + x_2 = 3$$
; $4x_1 + 3x_2 \ge 6$; $x_1 + 2x_2 \le 3$; $x_1, x_2 \ge 0$.

Also, discuss the effect on the optimal solution when the vector b is changed from $(3,6,3)^T$ to $(5,5,3)^T$.

9. Solve the following maximization transportation problem:

Market	Plant			Requirement
	P1	P2	P3	at Market
M1	2	7	4	5
M2	3	3	1	8
M3	5	4	7	7
M4	1	6	2	14
Available	-7	9	18	

10. Examine the convexity of the sets

(a)
$$S = \{(x_1, x_2) : x_1^2 + x_2^2 \le 1, x_1 + x_2 \ge 1\}$$

(b)
$$S = \{(x_1, x_2) : 4x_1 + 3x_2 \le 6, x_1 + x_2 \ge 1\}.$$