

DOON UNIVERSITY, DEHRADUN

Department of Mathematics, School of Physical Sciences Mid Semester Examination, Even Semester 2017-18

Class: M.Sc.Mathematics

Course: Measure and Integration

Time Allowed: 2 Hours

Semester: II

Course Code: MAC-454

Max Marks: 30

Note: Attempt all Six questions in Section A. Each question carries 1 marks.

Attempt any Four questions in Section B. Each question carries 3 marks.

Attempt any Three questions in Section C. Each question carries 4 marks.

Section: A

(Very Short Answer Type Questions)

Attempt all Six questions.

 $[6 \times 1 = 6 \text{ Marks}]$

- 1. The cardinal number of the set whose elements are the roots of a polynomial equation with integer coefficients is:
 - (a) finite (b) χ_0 (c) f (d) c.
- 2. If E is any given set then given $\epsilon > 0$, there exists an open set $O \supseteq E$ such that $(a)m^*(O) < m^*(E) + \epsilon$ (b) $m^*(E) < m^*(O) + \epsilon$ (c) $m^*(O) < m^*(E) \epsilon$ (d) none of these.
- 3. Which of the following relation shows that each of the interval [a, b], (a, b), (a, b), (a, b), (a < b) has the power of continuum

(a) f(x) = a + (b - a)x (b) f(x) = b + (a - b)x (c) f(x) = a + bx (d) f(x) = b + ax.

- (b) f(a) = b + (a b)a (b) f(a) = a + ba (a) f(a) = a
- 4. If E_1 and E_2 are any measurable sets such that $E_1 \subset E_2$ and $m(E_2) < \infty$ then Is $E_2 E_1$ measurable? If yes then $m(E_2 E_1)$ is.....
- 5. The cardinal number of the sets $\{\phi, \{\phi\}, \{\phi, \{\phi\}\}\}\}$ is (a)4 (b) 3 (c) χ_0 (d) c.
- 6. According to Schroeder-Bernstein theorem: $A \sim B$ if f.....

Section B

(Short Answer Type Questions)

Attempt any Four questions.

 $[4 \times 3 = 12 \text{ Marks}]$

- 7. Prove or disprove that the set of irrational numbers in [0,1] is non-denumerable. Also, find its cardinal number.
- 8. Define the concept of exterior measure of a set.
- 9. Prove that E is measurable if $m^*(E) = 0$.
- 10. Show that the union of denumerable collection of denumerable sets is denumerable.
- 11. show that $2^{\chi_0} = c$

Section C

(Long Answer Type Questions)

Attempt any Three questions.

 $[3 \times 4 = 12 \text{ Marks}]$

- 12. Define Cantor set and show that it is measurable and find its measure.
- 13. State and prove of the Cantor's theorem.
- 14. Show that every infinite set X contains a subset which is denumerable.
- 15. State and prove Schroeder-Bernstein theorem.