

## DOON UNIVERSITY, DEHRADUN Mid Semester Examination, 2017-2018 School of Physical Sciences

## B.Sc. (Mathematics) IV-Semester

Course: MAC-252: Riemann Integration and Series of Functions

Time Allowed: 2 Hours Maximum Marks: 30

## Note:

Attempt <u>all</u> questions from Section A, <u>any four</u> questions from Section B and <u>any two</u> questions from Section C.

Section: A  $(1.5 \times 4 = 6 \text{ Marks})$ 

- (1) With proper notations, define the terms, upper Darboux sum, lower Darboux sum and the Riemann sum.
- (2) Show that the Dirichlet function defined on [0, 1] is not integrable.
- (3) Find two values of c guaranteed by the mean value theorem for integrals for the functions  $f(x) = \sin(x)$  on  $[0, \pi]$ .
- (4) Evaluate

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n + ck}, c > 0.$$

(5) Show that for the logarithm function L(x),  $\frac{x-1}{x} \le L(x) < x-1$ , for x > 0.

Section: B  $(3 \times 4 = 12 \text{ Marks})$ 

- (1) Apply the Darboux approach to compute the integral  $\int_0^1 e^x dx$ .
- (2) Prove that every monotone function f on [a, b] is integrable.
- (3) Let f and g be two bounded functions defined on [a,b]. Prove that for any partition P, we have  $L(P,f)+L(P,g)\leq L(P,f+g)$ .
- (4) Find an standard partition P of [0,1] such that U(P,f)-L(P,f)<0.005, where f(x)=10x.
- (5) Let f be continuous on [0, 1], then using the generalized mean value theorem prove that

$$\lim_{n \to \infty} \int_0^1 \frac{nf(x)}{1 + n^2 x^2} dx = \frac{\pi}{2} f(0).$$
Section: C (6 × 2 = 12 Marks)

Prove following prepositions:

- (1) Let P, Q be the partitions of [a, b] then
  - (i)  $L(P, f) \le L(P \cup Q, f)$ ,
  - (ii)  $U(P \cup Q, f) \le U(P, f)$ .
- (2) If f is a bounded and integrable on [a, b] then for each  $\epsilon > 0$  there is a partition P of [a, b] such that  $U(P, f) L(P, f) < \epsilon$ .
- (3) (i) Let f be integrable on [a, b] and G be such that  $G(x) = \int_a^x f(x), dx, x \in [a, b]$ , then show that G(x) is continuous on [a, b].
  - (ii)  $E(ax) = (E(x))^a$ ,  $a \in \mathbb{Q}$ .