

Department of Mathematics, SOPS, Doon University, Dehradun Mid-Semester Examination March 2018 Integrated M.Sc. (Mathematics) Generic-IV (Fourth Semester) Course Title & Course Code: Numerical Methods, MAG-253

Time Allowed 2 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A & B. Attempt any four from Section C.

Section A

Q.1. Answer in brief (20-40 words):

(0.6 mark each)

- (i) Write the two major advantages of applying numerical methods.
- (ii) Write the relation between shift operator E and differential operator D.
- (iii) Write the second order forward difference for y_0 .
- (iv) Write the value of A_n in Newton's Forward difference interpolation formula.
- (v) Write the factorial notation of $x^{(n)}$.
- (vi) Write the relation between forward difference Δ and backward difference operator ∇ .
- (vii) Define interpolation and interpolating polynomial.
- (viii) Name two methods applied when the argument values are at unequal intervals.
- (ix) Write the basic difference between secant method and false-position method.
- (x) What are algebraic and transcendental equations?

Section B

(2 marks each)

Q.1. Estimate f(7.5) using Newton-Gregory Backward difference interpolation formula.

x 1 2 3 4 5 6 7 8 f(x) 1 8 27 64 125 216 343 512

Q.2. Compute f(0.3) for the data, using Newton's divided difference or Lagrange's interpolation:

x 0 1 3 4 7 *f(x)* 1 3 49 129 81

Q.3. Show that $\frac{\Delta^2}{E} \sin(x+h) + \frac{\Delta^2 \sin(x+h)}{E \sin(x+h)} = 2(\cos h - 1)[\sin(x+h) + 1].$

Roll No
Date of Exam

Q.4. Find by Sterling's formula, the value of f(x) at x = 0.05:

x 0.00 0.02 0.04 0.06 0.08 *f(x)* 0.00000 0.02256 0.04511 0.06762 0.09007

Q.5. Evaluate y(1.7475) from the following table by the above methods.

1.78 1.73 1.74 1.75 1.76 1.77 x1.72 .170333 0.168638 .179066 .175520 .173774 .172044 f(x).177284

Section C

(3.5 marks each)

- Q.1. Using Bisection method, find the root of $x^4 + 2x^2 x 1 = 0$, lying between [0,1], up to seven iterations.
- Q.2. Find the root of $x^3 9x + 1 = 0$, using False-position method.
- Q.3. Derive the formula for Newton-Raphson method graphically. Write its major advantage and disadvantage.
- Q.4. Find the root of log x = cos x, using fixed point iteration.
- Q.5. Find the roots of $x^3 7x^2 + 14x 8 = 0$, using Graeffe's root-squaring method.
