

Department of Mathematics, SOPS, Doon University Dehradun Mid-Semester Examination 2017-18

Integrated M.Sc. Mathematics-I (VI Semester)

Course Title & Course Code: Metric Space & Complex Analysis (MAC-351)

Time: 02 Hours Total Marks: 30

Note: (i) Attempt ALL the questions. (ii) Do neat and clean work.

Section A

Attempt ALL: (2x3=6)

- 1. Show that f(z) = Re(z) is not differentiable at any z.
- 2. Describe and plot the curve represented by $z(t) = t^2 + 2it$, $0 \le t < \infty$
- 3. Describe the interior point of a metric space. Let A be a set of a metric space then prove that A is openiff $A = A^o$.

Section B

Attempt ALL: (4x3=12)

- 1. Show that for any two points x and y of a metric space there exist disjoint open balls such that one is centered at x and other at y.
- 2. Define a metric space. Show that in a metric space (X,d) if $d^*(x,y) = min\{1,d(x,y)\}$ then d^* is also a metric for X.
- 3. Let A and B be two separated subsets of a metric space (X, d), then prove that (i) if A ∪ B is closed then A and B are closed. (ii) if A ∪ B is open then A and B are open.
- 4. If z_1 , and z_2 are two non-zero complex numbers s.t. $|z_1 + z_2| = |z_1| + |z_2|$, then find $\arg(z_1) \arg(z_2)$.

Section C

Attempt ALL: (3x4=12)

- **1.** Determine the region of the z-plane for which $|z-1|+|z+1| \le 3$.
- 2. Prove that the area of a triangle whose vertices and the points z_1, z_2, z_3 on the argand diagram is $\sum \left\{\frac{(z_2-z_3)|z_1|^2}{4i\,z_1}\right\}$, show that the triangle is equilateral if $z_1^2+z_2^2+z_3^2=z_1z_2+z_2z_3+z_3z_1$
- 3. Let $X = R^2$, and $x, y \in R^2$ defined $d(x, y) = d((x_1, x_2), (y_1, y_2)) = \begin{cases} |x_1 y_1| & \text{if } x_2 = y_2 \\ |x_1| + |x_2 y_2| + |y_1|, & \text{ow Show that } (X, d) \text{ is a metric space.} \end{cases}$
