

DOON UNIVERSITY, DEHRADUN

End Semester Examination, Odd Semester, 2017-18
Department of Mathematics, School of Physical Sciences

Class: M.Sc. Mathematics

Semester: III

Course: Non-Linear Programming Problem

Course Code: MAC-501

Time Allowed: 3Hours

Maximum Marks: 100

Note: Attempt all Four questions in Section A. Each question carries 5 marks.

Attempt any Four questions in Section B. Each question carries 10 marks.

Attempt any Two questions in Section C. Each question carries 20 marks.

SECTION: A (Very Short Answer Type Questions)

(Marks:4X5=20)

1. Solve the following linear programming problem(LPP) using simplex method

Maximize $Z = x_1 + 2x_2 + 3x_3$

Subjected to: $x_1 + 2x_2 + 3x_3 \le 10$; $x_1 + x_2 \le 5$; $x_1, x_2, x_3 \ge 0$.

2. Solve the following LPP using dual simplex method

Minimize $Z = x_1 + x_2$

Subjected to: $2x_1 + x_2 \ge 4$; $x_1 + 7x_2 \ge 7$; $x_1, x_2 \ge 0$.

3. Use graphical method to solve the following non-linear programming problem:

Maximize $f(X) = (x_1 - 2)^2 + (x_2 - 3)^2$ Subjected to: $3x_1 + 2x_2 \ge 6$; $-x_1 + x_2 \le 3$; $x_1 \le 2$.

4. Let $S \subseteq \mathbb{R}^n$ be a convex Set and $f: S \to \mathbb{R}$, then prove that f is a convex function on S if and only if its epigraph E_f is a convex set.

SECTION: B (Short Answer Type Questions)

(Marks: 4X10=40)

5. Solve the following non-linear programming problem using the method of Lagrangian multipliers.

Maximize $f(X) = 6x_1 + 8x_2 - x_1^2 - 2x_2^2$ Subjected to: $4x_1 + 3x_2 = 16$; $3x_1 + 5x_2 = 15$; $x_1, x_2 \ge 0$.

6. Use Kuhn-Tucker conditions to solve the following non-linear programming problem:

Minimize $f(X) = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$ Subjected to: $x_1 + 3x_2 \le 6$; $5x_1 + 2x_2 \le 10$; $x_1, x_2 \ge 0$. Subjected to: $x_1 + x_2 + x_3 \ge 15$; $x_1, x_2, x_3 \ge 0$. SECTION: C

9. Use dynamic programming to solve the following non-linear programming problem:

(Long Answer Type Questions)

(Marks: 2X20=40) 10. (a) State and prove the necessary an sufficient condition for the minimum or maximum of an

(12+8)

unconstrained non-linear programming problem of *n* variables. (12+8)(b) Let $S \subseteq \mathbb{R}^n$ be a non-empty convex set and $f: S \to \mathbb{R}$ be twice differentiable on S. Then prove that f is a convex function on S if and only if the Hessian matrix $\nabla^2 f(X)$ is positive

7. Let $f: S \to R$ be differentiable function on an open convex subset S of \mathbb{R}^n . Prove that f is convex

Use the method of separable convex programming for solving the following non-linear

Subjected to: $x_1 + x_2 + x_3 \le 4$; $x_1^2 - x_2 \le 3$; $x_1, x_2, x_3 \ge 0$.

function if and only if $f(X_1) - f(X_2) \ge (X_1 - X_2)^T \nabla f(X_2)$, $\forall X_1, X_2 \in S$.

Maximize $f(X) = x_1^2 - 5x_1 + x_2^2 - 5x_2 - x_2$

semi-definite $\forall X \in S$... 11. (a) Use Wolfe's method in solving the following quadratic programming problem (12+8)Maximize $f(X) = 2x_1 + 3x_2 - 2x_1^2$

Subjected to: $x_1 + 4x_2 \le 4$; $x_1 + x_2 \le 2$; $x_1, x_2 \ge 0$.

(b) Solve the following 3×3 game by LPP.

Minimize $Z = x_1^2 + x_2^2 + x_3^2$

Player B Player A 3 5 -3 6 2 6

programming problem:

12. (a) Solve the following geometric programming problem

Minimize
$$f(X) = 5x_1^{-1}x_2^{-1}x_3^{-1} + 5x_2x_3$$

Subjected to: $2x_1x_3 + x_1x_2 = 4$; $x_1, x_2, x_3 \ge 0$.

(b) Use Two-Phase method to solve the following LPP:
Maximize
$$Z = 3x_1 - x_2$$

Subjected to: $2x_1 + x_2 \ge 2$; $x_1 + 3x_2 \le 2$; $x_2 \le 4$; $x_1, x_2 \ge 0$.