

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First Semester, 2017 School of Physical Sciences M.Sc. (Mathematics)

Course: MAC-406: Linear Algebra

Time Allowed: 2 Hours

Maximum Marks: 50

Note:

1. Attempt any nine Questions from Sections A.

2. Attempt any four Questions from Sections B.

3. Attempt any two Questions from Sections C.

SECTION: A

 $(9 \times 2 = 18 \text{ Marks})$

1. Let T be a linear transformation from \mathbb{R}^7 onto a 3-dimensional subspace of \mathbb{R}^5 . Then dim Ker(T) is ...

2. A linear operator T is invertible iff ker(T) = ...

3. If V is an inner product space and if $\{w_1, w_2, ..., w_n\}$ is an orthonormal set in V, then $\sum_{i=1}^n |x_i|$ $w_i, v > |^2 \le \dots$

4. If S_1 and \overline{S}_2 are subsets of an inner product space V, then $S_1 \subseteq S_2 \implies \dots$

5. A matrix A is diagonalizable if there an ... matrix P such that

6. If V = C(R) and W = R(R). Then dim $\frac{V}{W} = 0$. 7. If α and β are vectors in a Unitary space, then x and y are

8. The minimal polynomial for the matrix

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

9. If T is a diagonalizable linear operator, then the minimal polynomial for T is a

10. If in an inner product space ||x+y|| = ||x|| + ||y||, then x and y are

SECTION: B

 $(5 \times 4 = 20 \text{ Marks})$

1. Let V be the vector space of all real-valued continuous fuctions. Show that the linear operator $T:V\to V$ defined as $(Tf)(x)=\int_0^x f(t)dt$ has no eigenvalues. 2. State and prove Pythagoras theorem.

3. Let T be a linear transformation from R^3 into R^2 and let U be a linear transformation from R^2 into R^3 . Prove that the linear transformation UT is not invertible.

4. Show that an orthogonal set of nonzero vectors in an inner product space V is linearly independent.

5. Let $R_4[x] = \{a_0 + a_1x + a_2x^2 + a_3x^3 | a_i \in R\}$. Define $T: R_4[x] \to R_4[x]$ as $(T(f)) = \frac{df(x)}{dx}$ for all $f(x) \in R_4[x]$. Let $\beta = \{1, x, x^2, x^3\}$ be an ordered basis of $R_4[x]$. Find $[T]_{\beta}$.

SECTION: C

 $(2 \times 6 = 12 \text{ Marks})$

Let V be real functions satisfying d²y/dx² + 9y = 0 with inner product is defined by < y, z >= ∫₀^π yzdx. Find an orthonormal basis of V.
Determine all possible jordan Canonical forms for a linear operator T: V → V whose characteristics.

tristic poynomial $(t-2)^3(t-5)^2$. In each case find the minimal polynomial.

3. Let $A: R^4 \to R^3$ where

$$M = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$$

Find a basis and the dimension of image of A and the Kernel of A.