

DOON UNIVERSITY, DEHRADUN

End Semester Examination, Odd Semester, 2017-18 Department of Mathematics, School of Physical Sciences

Class: M.Sc. Mathematics

Course: Numerical Analysis

Semester: I

Course Code: MAC-404

Time Allowed: 3Hours

Maximum Marks: 60

Note: Attempt all Four questions in Section A. Each question carries 4 marks.

Attempt any Four questions in Section B. Each question carries 5 marks. Attempt any Three questions in Section C. Each question carries 8 marks.

SECTION: A (Very Short Answer Type Questions)

(Marks: 4X4=16)

- 1. Define the following terms:
 - (a) Zero stability and root condition for a linear multi-step method
 - (b) Order of Convergence of a method to find root of the equation f(x) = 0
 - (c) Nonlinear boundary value problem of second order with Dirichlet and non-Dirichlet boundary condition.
 - (d) Quadratic Spline
- 2. Derive the formula for Newton Raphson method. Hence, find the root of the equation $x log_{10}x = 1.2$ correct to five decimal places in the interval (1,3).
- 3. Use the numbers $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$ to find the second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$. Hence find the value of f(3.25) using interpolating polynomial.
- **4.** Solve by Taylor's series method the equation $y' = \log(xy)$ for y(1.1) and y(1.2) given that y(1) = 2.

SECTION: B (Short Answer Type Questions)

(Marks: 4X5=20)

5. Obtain the piecewise cubic interpolating polynomial for the function f(x) defined by the given data. Also interpolate it at x = 0 and x = 3.

x	-4	-3	-1	1	2	4	5
f(x)	-108	-255	-303	-303	-300	-108	225

6. Fit the following four points by the cubic splines:

x	1	2	3	4
f(x)	1	5	11	8

Use the end conditions f''(1) = f''(4) = 0. Hence find an estimate of f(1.5).

7. Given $y' = y \cos x$, y(0) = 1. Compute y(0.2) and y(0.4) with h = 0.2 using Improved Euler's method.

- 8. Derive Milne's Predictor corrector formula to find approximate solution of an initial value problem.
- 9. Solve the following boundary-value problem using finite difference method.

$$y'' = (2 + 4x^2)y$$
, $y(0) = 1$, $y(1) = e$
SECTION: C

(Long Answer Type Questions)

(Marks: 3X8=24)

10. Derive formula for Hermite interpolating polynomial p(x) for the function f(x) with interpolating conditions $p(x_i) = f(x_i)$ and $p'(x_i) = f'(x_i)$, i = 0,1,...n. Hence, find the value of f(0.5) from the following data:

x	-1	0	1
f(x)	1	1	3
f'(x)	-5	1	7

- 11. Using Runge-Kutta method of order four, calculate y(0.1), y(0.2), y(0.3), y(0.4) given that $y' = x y^2$, y(0) = 1. Taking these values as starting values, find y(0.5) correct to three decimal places using Adams-Bashforth and Adams-Moulton methods as predictor-corrector respectively.
- **12.** Use Newton's method with $x^{(0)} = 0$ to compute $x^{(3)}$ for the following nonlinear system. $5x_1^2 x_2^2 = 0$

$$x_2 - 0.25(\sin x_1 + \cos x_2) = 0.$$

13. Find the interval of absolute stability for the two-step implicit method

$$y_{n+1} = 3y_n - 2y_{n-1} + \frac{h}{12} \left[13f_{n+1} - 20f_n - 5f_{n-1} \right]$$
 using (a) Schur's criterion

(b) Routh-Hurwitz criterion.