

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First Semester, 2017 M. Sc. Mathematics

Course: MAC-402: Topology

Time Allowed: 3 Hours

Maximum Marks: 100

Note: Attempt <u>all</u> questions from section A, <u>any four</u> questions from section B and any two questions from section C.

In all of the problems, it will be understood that all the sets are subsets of some topological space (X,T).

Section: A

 $(4 \times 5 = 20 \text{ Marks})$

Prove following propositions:

- (1) A^{o} is the largest open subset of A.
- (2) If A is closed, then $A' \subset A$.
- (3) (a) Find the closure of the set $\{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, ...\}$ with respect to the usual topology U on \mathbb{R} .
 - (b) Separated sets are disjoint but converse is not true.
- (4) Continuous image of a compact set is compact.
- (5) (a) The real line (\mathbb{R}, U) is separable.
 - (b) The constant map $f: X \longrightarrow Y$, defined by f(x) = c is continuous.

Section: B

 $(10 \times 4 = 40 \text{ Marks})$

- (1) Prove the following propositions:
 - (i) $A^{o} = (\overline{A^{c}})^{c}$,
 - (ii) $\overline{A} = ((A^c)^{\circ})^c$
- (2) A map $f: X \longrightarrow Y$, (X, T) and (Y, V) topological spaces, is continuous iff $f^{-1}(H)$ is T-open for every V-open set H.
- (3) Every compact subset of a Hausdorff space is closed.
- (4) (a) Show that the set (0,1) is not compact in real line.
 - (b) Show that the map $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x) = x^2$ is continuous.
- (5) Let A and B be separated sets such that $A \cup B$ is closed. Then show that A and B are closed.

Section: C

 $(20 \times 2 = 40 \text{ Marks})$

- (1) (i) Let \mathbb{N} be the set of all natural numbers and T a collection of ϕ all subsets of \mathbb{N} of the form $G_m = \{m, m+1, m+2, ...\}, m \in \mathbb{N}$. Show that T is a topology.
 - (ii) $\operatorname{bd}(A) = \overline{A} \cup \overline{A^c}$.
- (2) (a) Every compact topological space is locally compact but the converse is not true.
 - (b) Subsets of separated sets are separated.

(3) (i) Show that the map $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

is not $\mathbb{U} - \mathbb{U}$ continuous.

- (ii) Prove that
 - (a) the identity map of any topological space is continuous;
 - (b) any constant map is continuous;
 - (c) if (X, \mathcal{D}) is the discrete topological space then any map $f: X \to Y$ to another topological space (Y, V) is continuous;
 - (d) if (Y,\mathcal{I}) is the indiscrete topology then any map $f:X\to Y$ from another topological space (X,T) is continuous.