

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First Semester, 2017 School of Physical Sciences

M.Sc. (Mathematics)

Course: MAC-401: Finite Field

Time Allowed: 2 Hours

Maximum Marks: 50

Note:

- 1. Attempt any nine Questions from Sections A.
- 2. Attempt any four Questions from Sections B.
- 3. Attempt any two Questions from Sections C.

SECTION: A

 $(9 \times 2 = 18 \text{ Marks})$

1. The degree of $Q(\sqrt[3]{2}, \sqrt[4]{3})$ is....

2. $\frac{Z_3}{\langle x^3+2x+2\rangle}$ is a field with ... element. 3. The splitting field of x^3-1 over Q is

4. Any finite subgroup of the multiplicative group of a finite field is

5. $[GF(p^n): GF(p^m)] = \dots$ (provided m divides n).

6. If $p(x) \in F[x]$ and degree of p(x) is n. Then the splitting field for p(x) over F has degree at

7. Can the cube be tripled? and why?

8. A finite extension of a finite field is a ... extension.

9. The degree of $Q(\sqrt[3]{\pi})$ over Q is

10. π and e in R are over Q.

SECTION: B

 $(4 \times 5 = 20 \text{ Marks})$

1. Find the degree of minimal splitting field of $x^4 + 2$ over Q.

2. If a > 0 is constructible. Then prove that \sqrt{a} is also constructible.

3. Let $x^p - a \in F[x]$ where CharF = p. Then show that either $x^p - a$ is irreducible over F or $x^p - a$ is a p^{th} power of a linear polynomial in F.

4. Discuss the irreducibility of $x^4 + 1$ over rationals.

5. If L is an algebric extension of K and K is an algebric extension of F. Then show that L is an algebric extension of F.

SECTION: C

 $(2 \times 6 = 12 \text{ Marks})$

1. Determine the splitting field of $x^4 + x^2 + 1$ over Q. Also find its degree over Q.

2. If a real number α is constructible. Then prove that α lies in some extension field K of Q such that $[K:Q]=2^r$ for some non-negative integer r.

3. If a is any algebric number, then show that there exists a positive integer n such that na is an algebric integer.