

DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, 2nd Semester, 2018

Academic Year 2017-18 (Even Semester)

School of Physical Sciences (SoPS) Department name: Chemistry

Programme Name: Generic Elective, Integrated M.Sc. 5 Years

Course Title: Chemical Energetics, Equilibria & Functional Organic Chemistry-I
Course Code: CYG-151

Time Allowed 2.00 Hours Maximum Marks: 30 Note: Attempt All Questions from Sections A, B and C. (All terms have their usual meaning) Part A: Organic Chemistry [15 Marks] SECTION: A (Marks: 3) 1. When considering electrophilic aromatic substitution reactions electron, withdrawing substituents (e.g. nitro) are described as. (a) Ortho/para directing (b) Ortho/meta directing (c) Meta para directing (d) None of above 2. Complete the following reaction: CH₃CH=CH₂ + HBr → [1] a) BrCH2CH=CH2 b) CH₃CH₂CH₂Br c) CH₃CH(Br)CH₃ d) Br₂CHCH=CH₂ 3. When _____ reacts with heated zinc dust, the product is benzene [1] c) Benzaldehyde a) Benzoic acid d) Aniline b) Phenol SECTION: B (Marks: 6) 4. a) Differentiate between S_N1 and S_N2 reactions. [1] b) Explain why chlorobenzene is more stable than methyl chloride. [1] 5. Identify X and Y in the following reactions: $[2 \times 2]$

(a)
$$CuCI/\Delta$$
 X $CuCN, 250°C$ Y

(b) $HC = CH$ $Red\ hot$ X CH_3CI/A Y

SECTION: C (Marks: 6)

6. Elaborate:

[1 x 3]

- (a) Benzyne mechanism
- (b) Williamson's ether synthesis
- (c) Gattermann reaction
- 7. Why does benzene undergo electrophillic substitution reactions? Explain electrophillic substitution mechanism w.r.t sulphonation, nitration and Friedal craft acylation of benzene. [3]

Part B: Physical Chemistry

[15 Marks]

SECTION: A

(Marks: 3)

8. Which of the following is true regarding the concentration of products, for a chemical reaction that is already at equilibrium, assuming no disruptions to the equilibrium?

[1]

- a) The concentrations of products will not change because there are no more reactants.
- b) The concentrations of products will not change because the limiting reagent is gone.
- c) The concentrations of products will not change because the forward and reverse rates are equal.
- d) The concentrations of products will change continually because of reversibility.
- 9. ΔH_f° is non zero for

[1]

- a) Br₂(1)
- b) O₂(g) c) C(graphite)
- d) $CO_2(g)$
- 10. Consider the following reversible exothermic reaction

[1]

 $A + B \rightleftharpoons C + D$

The temperature of the vessel in which reaction is taking place is increased from 300 K to 350 K. This leads the rate of the reverse reaction to

- The change cannot be determined
- b) Increase
- c) Decrease
- d) Stay the same

SECTION: B (Marks	: 6)
11. (a) How much heat is needed to raise the 100 g of copper from 10 °C to 100 °C	
Given specific heat of copper = $0.092 \text{ cal/g}^{\circ}\text{C}$	[1]
(b) Derive Kirchoff's equation depicting the variation of reaction with temperature	[1]
12. a) State the law of chemical equilibrium.	[1]
b) The heat evolved on dissolving CuSO ₄ (s) in water is 86.6 kJ/mol. If $\Delta H_f^o(Cu^{2+})$ is	
64.4 kJ/mol, what is $\Delta H_f^{o}(SO_4^{2-})$? $\Delta H_f^{o}(CuSO_4(s)) = -770.0 \text{ kJ/mol}$	[1]
13. a) State second and third law of thermodynamics.	[1]
b) Coloulate the assilitation and a	[-]
b) Calculate the equilibrium constant for the reaction	[1]
$A + B \rightleftharpoons 2C$	
If 1.0 mole of A, 1.4 mole of B and 0.5 mole of C are placed in a 1.0 dm ³ vessel and allowed to come to equilibrium. The final concentration of C is 0.75 mol/dm ³	

SECTION: C	Marks: 6)
14. (a) Calculate K_p/K_c for the following reactions at 27 °C.	[1]
$NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$	
(b) Explain the effect of change of concentration and temperature on the equilibrium with the help of Le Chatelier's principle.	e state of [2]
15. (a) How do you determine resonance energy with the help of bond energy?	[1]
(b) What is the heat of reaction (ΔH) for the following reaction?	[2]
$N_2 + 3H_2 \longrightarrow 2NH_3$	

Given: Bond energy of N=N=945 kJ/mol, H-H = 436 kJ/mol, N-H = 390 kJ/mol.