

DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, Sixth Semester, 2018

Academic Year 2017-18 (Even Semester)

School of Physical Sciences, Department of Chemistry

Programme Name: Integrated M.Sc. Chemistry, 6th Semester

Course Code with Title: CYC-252

Org. Chem. III: Heterocyclic Chemistry

Time Allowed 2.00 Hours Date: 22-03-2018

Maximum Marks: 30

SECTION: A

(Very Short Answer Type Questions)

[1] Write a short note on solubility of alkyl cyanides. [1]
[2] Write a short note on chirality of amines. [1]
[3] Draw the structural formulae for the major product in following two reactions: [1]

- [4] Explain why 3° amines have lower b.p. and m.p. than those of 1° and 2° amines. [1]
- [5] Match the boiling points 65° C, -6° C and -88° C with the compounds CH₃CH₃, CH₃NH₂ and CH₃OH. Explain your answer briefly. [1]
- [6] (a) Write a very short note on Hinsberg Reagent Test. [1/2]
 - (b) What is the name and structure of amine formed in the following reaction? [1/2]

$$CH_2Br = 0$$

$$2. \text{ } \text{OH/H}_2O$$

$$1. \text{ } \text{OH}$$

Benzyl bromide

SECTION: B

(Short Answer Type Questions)

- [7] (a) Explain the reason behind high stability of benzene diazonium salts. Also explain the reason behind high utility of benzene diazonium salts in organic syntheses. [2]
 - (b) Write three examples of Sandmeyer Reactions with chemical reactions. [1]
- [8] (a) Write the order of grading of aromaticity among pyrrole, furan and thiophene. Also explain the reason.
 - (b) Write notes on: (i) Gabriel Phthalimide Synthesis, (ii) Hoffman and Curtius Rearrangements. [2]
- [9] Describe Hofmann Exhaustive Methylation and Hoffman Elimination in detail. Also explain why Ag₂O is used in elimination step. Describe the orientation in Hoffman Elimination.
- [10] (a) Write short note on dipole moment and basicity of pyrrole and its saturated analog.
 - (b) Write the products in following reactions: [2]

SECTION: C

(Long Answer Type Questions)

[11] Write notes on;

[1+1+2+1+1]

(a) Paal-Knorr Synthesis,

- (b) Knorr-pyrrole synthesis
- (c) Formation of Products in the following image:

- (d) Cycloaddition reactions of pyrrole
- (e) Orientation of Electrophilic Substitution Reactions in Pyrrole
- [12] (a) Why is pyridine much less reactive towards electrophiles than pyrrole and benzene?
 - (b) Write details about following chemical reactions:

[1+1+1+2]

- (i) Fischer Indole Synthesis
- (ii) Madelung Synthesis
- (iii) Skraup's Synthesis
- (iv) Knorr Quinoline Syntheses