

DOON UNIVERSITY, DEHRADUN

End Semester Examination, Odd Semester, 2017-18 Department of Mathematics, School of Physical Sciences

Class: Integrated M.Sc.(PHY, CHE, CS)

Semester: III

Course: Applications of Algebra

Course Code: MAG-201

Time Allowed: 3Hours

Maximum Marks: 100

Note: Attempt all Ten questions in Section A. Each question carries 2marks.

Attempt any Eight questions in Section B. Each question carries 5 marks. Attempt any Four questions in Section C. Each question carries 10 marks.

SECTION: A

(Very Short Answer Type Questions)

(Marks: 10X2=20)

- 1. If B is an idempotent matrix, show that A = I B is also idempotent that AB = BA = 0.
- 2. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$.
- 3. Classify the following quadratic form as positive definite, positive semi-definite, negative semi definite, or indefinite.

 $f(x) = 2x_1^2 + 3x_2^2 - 4x_1x_2$

- 4. Test the linearly independence or dependence of the vectors $X_1 = (1 \ 2 \ 3)$ and $X_2 = (3 \ 6 \ 12)$.
- 5. Prove that the identity element of a group is unique.
- 6. Show that a cyclic group is necessarily abelian.
- 7. Determine which of the following permutations are even and odd:

(i) f = (1 2 3 4 5)(1 2 3)(4 5)

(ii) $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$

9. Define and explain the following terms:

(i) Degenerate solution

(ii) Convex set

10. Solve the following linear programming problem:

Max 3x + 2y

Subject to: $x + y \le 2$; $x \ge 0$; $y \ge 0$.

SECTION: B

(Short Answer Type Questions)

(Marks: 8X5=40)

- 11. Find the minimal polynomial m(t) of $\begin{bmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{bmatrix}$.
- 12. State and prove Cayley Hamilton theorem and verify it for the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
- 13. Write the matrix A of the quadratic form $(x) = 6x_1^2 + 65x_2^2 + 11x_3^2 + 4x_1x_3$. Find the eigenvalues of A and hence determine the nature of definiteness of the quadratic form.
- 14. Show that the set $S = \{1, 5, 7, 11\}$ is a group with respect to multiplication modulo 12.
- 15. If H and K are two subgroups of a group G, then $H \cup K$ is a subgroup of G if and only if either $H \subset K$ or $K \subset H$.
- 16. Prove that the set A_3 of three permutations (a), (a b c), (a c b) on three symbols a, b, c forms a finite abelian group with respect to the permutation multiplication.

17. Use Graphical method for solving the following non-linear programming problem.

Minimize
$$f(X) = x_1^2 + x_2^2$$

Subject to: $x_1 \le 10$; $x_1 - x_2^2 - 4 \ge 0$.

18. Use Simplex method to solve the following LPP:

Minimize
$$Z = 5x_1 + 3x_2$$

Subjected to: $4x_1 + 5x_2 \le 10$; $5x_1 + 2x_2 \le 10$; $3x_1 + 8x_2 \le 12$; $x_1, x_2 \ge 0$.

SECTION: C

(Long Answer Type Questions)

(Marks:4X10=40)

- 19. Let $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$. (a) Find all eigenvalues and corresponding eigenvectors.
 - (b) Find a nonsingular matrix P such that $D = P^{-1}AP$ is diagonal. (c) Find A^6 and f(A), where $t^4 - 3t^3 - 6t^2 + 7t + 3$.
- 20. Find the inverse of the following matrix using Gauss-Jordan method.

$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
Using Partial 2 method, solve the following solve the followi

21. Using Doolittle's method, solve the following system.

$$28x + 4y - z = 32$$
$$x + 3y + 10z = 24$$

2x + 17y + 4z = 35

22. Use Big-M method to solve the following linear programming problem:

Maximize $Z = 5x_1 + 2x_2$

 $3x_1 + 2x_2 \ge 3$; $x_1 + 4x_2 \ge 4$; $x_1 + x_2 \le 5$; $x_1, x_2 \ge 0$. 23. Prove that a non-empty subset H of a group G is a subgroup of G if and only if $ab^{-1} \in H \ \forall \ a,b \in H.$