

DOON UNIVERSITY, DEHRADUN

End Semester Examination, December 2017

School of Physical Sciences Inorganic Chemistry I: Atomic Structure & Chemical Bonding Course: CYC-101

Time Allowed: 2 Hours.

Maximum Marks: 30

Section: A (Attempt all questions)

(Marks: $10 Q \times 1 = 10$)

- 1. Which of the following molecules violate octet rule:
- (i) BF3 (ii) PF5 (iii) CCl4 (iv) CO2 (v) SF6.
- 2. Explain why CO₂ and CCl₄ molecules are non polar while CHCl₃ molecule is polar?
- 3. Which is more polar, H₂S or H₂O and why?
- 4. What is resonance? Discuss by taking an example of CO_3^{2-} and BF_3 .
- 5. Why do the molecules have definite geometry? In which of the following types of geometry, all the bond angles are not the same:
- (i) Octahedral (ii) Tetrahedral (iii) Trigonal planar (iv) Trigonal bipyramidal.
- 6. Comment on the basicity order of the hydrides of group 15 elements (NH₃, PH₃, AsH₃ and SbH₃).
- 7. Give reason for the following:
- i) Electron affinity of fluorine atom is less than that of chlorine atom.
- ii) Ionization energies of C, N and O follow the order: C < N > O.
- 8. When phosphorus reacts with excess Cl_2 gas, the compound phosphorus pentachloride (PCl_5) is formed. In the gaseous and liquid states, this substance consists of PCl_5 molecules, but in the solid state it consists of a 1:1 mixture of PCl_4^+ and PCl_6^- ions.

Predict the geometric structures of PCl₅, PCl₄⁺ and PCl₆⁻.

9. How do you expect the bond type to change for the chlorides of the third period elements, NaCl, MgCl₂, AlCl₃, SiCl₄, PCl₅, SCl₂ and Cl₂, going from left to right? Explain the change in the bond type.

10. What do you understand by dual character of matter? Derive de Broglie equation.

Section: B (Attempt any four questions)

(Marks: $40 \times 2 = 8$)

- 11. Discuss the structure of the following molecules using VSEPR theory:
 - (i) ClF₃ (ii) XeF₆ (iii) I₃⁻ (iv) SnCl₃⁻.
- 12. Write a short note on (i) Slater's rule (ii) Bohr's postulates.
- 13. (i) How does the Bohr's theory of hydrogen atom differ from that of Schrodinger?
- (ii) Write down the general form of the Schrodinger equation and define each of the terms in it.
- 14. What do you understand by polar and non-polar molecules? Is it possible for the non-polar molecules to have polar bonds? Justify your answer with examples.
- 15. Calculate the short and long wavelength limits of *Lyman* series in the spectrum of hydrogen. Given $R_{\rm H} = 109,691~{\rm cm}^{-1}$.

Section: C (Attempt any three questions)

(Marks: $3Q \times 4 = 12$)

- 16. What is meant by metallic bond? Illustrate the nature of metallic bond on the basis of
- (i) Electron sea model (ii) Valence bond model.
- 17. Draw MO diagrams for CO and HF molecules on the basis of s-p mixing of orbitals.
- 18. Explain the following terms in details: (i) Bent's rule (ii) Lattice energy (iii) Sigma and pi bonds.
- 19. Explain on the basis of molecular orbital (MO) theory:
- (i) Oxygen molecule is paramagnetic while N₂ is diamagnetic.
- (ii) The bond order in O_2^- is less than that in O_2 which, in turn is less than that in O_2^+ .
- (iii) The bond energy of NO⁺ is higher than that of NO.
- (iv) Hydrogen forms diatomic molecule while He remains monoatomic.