

DOON UNIVERSITY, DEHRADUN

End Sem Examination, Odd Semester, 2016–2017 School of Physical Sciences (SoPS)

5th semester, Integrated M.Sc. 5 Years (Chemistry)

Dated: 18 Dec, 2017

Course: Phys. Chem. V: Quantum Chemistry & Spectroscopy Course Code: CYC-302

Time Allowed: 3 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A, B and C. (All terms have their usual meaning)

SECTION: A (Marks: 5)

- [1] Calculate the force constant of HCl molecule, when fundamental vibrational frequency of is 2890 cm $^{-1}$. Molar masses of ^{1}H = 1.67 x 10^{-27} kg; ^{35}Cl = 58.06 x 10^{-27} kg.
- [2] (i) Exchange integral term (H_{ij}) in the approximate energy expression of a molecular orbital model represents: [1/2]
 - a) Energy of electronic interaction of e's in the atomic orbital
 - b) Energy of interaction of e^{-s} in the influence of i and j nuclei
 - c) Overlapping integral factor of orbitals centred at nuclei i and j
 - d) None of the above
 - (ii) The correct order of bond strength of the species O_2 , O_2^+ , O_2^- and O_2^{2-} is: [1/2]
 - a) $O_2^+ > O_2 > O_2^- > O_2^{2-}$
 - b) $O_2^{2-} > O_2^{-} > O_2^{-} > O_2^{+}$
 - c) $O_2 > O_2^- > O_2^+ > O_2^{2-}$
 - d) $O_2^- > O_2^+ > O_2^{2-} > O_2$
 - [3] Illustrate:
 - (a) Raman rotational vibrational transitions and bands

[1/2]

(b) ESR spectra for methyl radical

[1/2]

[4]	Calculate the equivalent, non-equivalent protons and draw the NMR	spectra for: $[1/2 + 1/2]$
	a) But-1-ene	
	b) isopentane	
[5]	Calculate the degree of freedom for BF ₃ , C ₂ H ₂	[1/2+1/2]
	a) BF ₃	
	b) C ₂ H ₂	
SECT	TION: B	(Marks: 10)
MACO CONTRACTOR		
[6]	Define quantum yield. What are the reasons for abnormal quantum yield.	ield? [2]
[7]	What are the basic differences between Valence Bond Theory (VBT) are Orbital Theory (MOT).	nd Molecular [2]
[8]	Derive expression for Lambert-Beer law. What are its limitations?	[2]
[9]	Using free electron model approach, illustrate the number of transitions for conjugated system of hexa-1,3,5-triene.	f electronic [2]
[10]	Define:	$[1/2 \times 4]$
	(a) Law of mutual exclusion	
	(b) Frank Condon Principle	
	(c) Spin spin coupling	
	(d) Principle of NMR spectroscopy	
		(Marks: 15)
	TION: C	rogen atom is
[11]	Show that the average value of 1/r for an electron in 1s orbital of hydralog, given that $\psi_{1s} = (e^{-r/ao})/(\pi a_o^3)^{1/2}$	[3]
[12]	What is variational principle? Using this principle, deduce the $E\alpha(min)$ and $\phi_{\alpha}(min)$ of a Simple Harmonic Oscillator (S.H.O.) function expression,	xpression for having wave

 $\phi(x) = e^{-\alpha x^2}$

[4]

- [13] What is isotope substitution method? How is it used in determination of bond length for linear triatomic molecule?
- [14] Derive an expression for vibrational energy in terms of wave number for a diatomic molecular transition for fundamental vibrational frequency, third overtone and hot band.
- [15] What are radiative and non-radiative transitions taking place in absorption and emission pathways? Discuss in details. [3]