

DOON UNIVERSITY, DEHRADUN

End Semester Examination,

2017-2018

School of Physical Sciences (SoPS)

Date: Dec 2017

Integrated M.Sc. 5 Years (Chemistry)

3rd Semester

Course Title:

Org. Chem. II: Oxy, Functional Groups

Oxygen Containing

Course Code: CYC-203

Time Allowed: 03 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A,B,C.

SECTION: A

(Marks: 6)

[1] Draw the structural formula of the missing compounds **A** to **D**. [1/4+1/4+1/4+1/4]

(ii) O
$$CH_3$$

$$CH_3CCI + CH_3COH \longrightarrow \mathbf{B} + HCI$$

$$CH_3$$

(iii) O
$$C - C1 + 2CH_3NH_2 \longrightarrow C + CH_3NH_3 C1^{-1}$$

- Explain why ethanoyl chloride must be protected from atmospheric moisture during [2] storage. [1] [3] Complete the following reactions: [1] (i) 0 COH + PCl. -(ii) (iii) 0 CH₃COH + CH₃CH₂CH₂OH (iv) $CH_{3}(CH_{2})_{16}C - NH_{2}$ + NaOH [4] Write the chemical equations for the acid-catalyzed and alkali-catalyzed hydrolyses of each of the following compounds: (a) Ethyl butanoate (b) Propanamide (c) Benzoyl Chloride (a) Arrange the following compounds in decreasing order of solubility in water: [5] [1/2]CH₃CH₂COOH, CH₃CH₂COOCH₃, CH₃COOH (b) Propanedioic acid forms intramolecular hydrogen bonds. Draw its structural
- formula, showing clearly the formation of intramolecular hydrogen bonds. [1/2]

 [6] (a) Which of the following best represents the rate-determining transition state for the reaction shown below, and **Why**? [1/2]

$$(B) \qquad \stackrel{\text{H. H. } \mathring{\delta}^-}{\text{H. }} \stackrel{\hat{\delta}^-}{\text{O}} = C_6 H_5$$

- D) Br.....C.--O-C₆H₅
- (b) Most effective pair of reagents for the preparation of tert-butyl ethyl ether is [1/2]
- A) potassium tert-butoxide and ethyl bromide.
- B) potassium *tert*-butoxide and ethanol.
- C) sodium ethoxide and tert-butyl bromide.
- D) tert-butyl alcohol and ethyl bromide

SECTION: B

(Marks: 12)

[1]

[7] (a) Give the major products that are formed by heating each of the following ethers with HI.

CH₃

(b) See the following image and briefly describe the compound in terms of electron domain geometry, molecular geometry, shape, angle around central atom and hybridization. [1]

[8] (i) Comment on the following two images:

$$H_3C - C - O^-Na^+ + C_2H_5Br \xrightarrow{Path 1}$$
 CH_3

$$C_2H_5O^-Na^+$$
 $H_3C_-C_-Br$ Path 2 (Minor) CH_3 (Major)

[9] (a) What will be the product of dehydration of following alcohols?

$$H_3C$$
 CH_3 CH_3

H₃C CH

[1/2]

Page 4 of 6

[1]

[10] (a) Write the products in the following oxidation reaction:

$$CH_3 \longrightarrow ?$$

$$H_3C$$
 OH \longrightarrow ?

(b) Write short note on Periodic Acid Oxidation of Glycols.

[1]

[11] (a) Write Short notes on:

[1]

- (i) Bouveault-Blanc reduction
- (ii) Williamson's Process
- (b) Pinacol-Pnacolone Rrearrangement and its mechanism.

[1]

(b) Explain the reason for difference in acidic strength of Phenol and Acetic Acid? [1]

SECTION: C (Marks: 12)

[13] Answer the following:

(i) Outline a chemical test to distinguish between **A** and **B**?

and B? [1]

[1]

[4]

- (ii) Compound C also gives a +ve result on reaction with NaHCO₃. Show how you would determine whether the sample is C or a mixture of A and B? [1]
- (iii) Write a note including the mechanism of following reactions:
 - (a) Kolbe Reaction
 - (b) Reimer Tiemann's Reaction
 - (c) Fries Rearrangement
 - (d) Claisen Rearrangement
- [14] Describe in details the mechanism and other aspects of the following reactions: [1.5+1.5+1.5+1.5]
 - (a) Claisen Condensation
 - (b) Dieckmann Cyclization
 - (c) Reformatsky reaction
 - (d) Industrial Preparation of Phenol