

DOON UNIVERSITY, DEHRADUN

Mid-Semester-Examination, Fourth-Semester, 2016-17

School of Physical Sciences

Core test paper of 5 Year (Integrated) MSc Program-Course: PHC-253: Analog Systems and Applications

Time Allowed: 2Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A, B, C.

SECTION: A

(Marks: 10)

- 1. The alternating voltage applied to FWR is $25\sin 100$ IIt. Assuming diode to be ideal, calculate the dc current through a load of 100Ω .
- 2. What is diffusion current? Give examples of LED materials.
- 3. Calculate the barrier potential for Si junction at (a) 100°C (b) 0°C
- 4. Write the characteristics of an ideal op amp.
- 5. Define: (a) PIV of half wave rectifier (b) knee voltage (c) avalanche breakdown (d) reverse saturation current

SECTION: B

(Marks: 10)

- 6. (a) Does a full wave rectifier better than half wave rectifier? Explain.
 - (b) Obtain expression for rectification efficiency of centre tapped rectifier.
- 7. A Zener regulator has an input voltage in the range 20V and a load current in the range of 20mA. If the Zener voltage is 6.8V, calculate the value of series resistor. Draw the circuit diagram for the same.
- 8. v_1 =0.42 mV and v_2 =0.44 mV, A_{0i} is 10^5 and CMRR is 80 dB. Determine output voltage.
- 9. (i) What happens when positive voltage is applied to p-side of p-n junction? Explain.

 (ii) Why-band-bending-occurs in a p-n-junction?

SECTION: C

(Marks: 10)

- 10. (a) What do you understand by mobility of charge carriers in a semiconductor?
 - (b) A n-type Si rod of length 0.7 cm has a cross-sectional area of 0.1 cm². A DC bias, voltage of 35V across on the rod results in a 5.6-amp DC current. Under this bias, an electric pulse applied at one end takes 10µs to traverse the length of the Si rod. Determine the carrier concentration.
 - (c) Differentiate between a solar cell and photo diode.
- 11. (a) Explain the virtual ground in an op amp circuit.
 - (b) Discuss op amp as integrator OR differentiator circuit.