

DOON UNIVERSITY, DEHRADUN

Mid-Semester Examination, Second-Semester, 2016-17 School of Physical Sciences

Core Physics test paper of 5 Years (Integrated) MSc Programmes
Course: PHC-151: Electricity & Magnetism

Time Allowed: 2Hours Maximum Marks: 30

Note: Attempt All Questions from Sections A, B, C.

SECTION: A

(Marks: $1 \times 6 = 6$)

- 1. Define static and dynamic resistance.
- 2. State Kirchhoff's current law.
- 3. By saying that the electrostatic field is conservative, we do not mean that
 - (a) It is the gradient of a scalar function $(\nabla . V)$ (b) Its circulation is identically zero
 - (c)The work done in a closed path inside the field is zero (d) The potential difference between any two points is zero
- 4. The dielectric constant of a polar dielectric (a) higher (b) smaller (d) same as that of a non polar molecule.
- 5. Why is the Electric field inside a conductor zero?
- 6. Why are electric field lines perpendicular to the surface of the conductor?

SECTION: B

(Marks: 12)

- 7. Draw-frequency-versus-current-for-parallel-LCR-resonant network. Write expression for its admittance.
- 8. A series RC circuit have $C = 10\mu F$, $R=120 \Omega$ and V=100V at 50 Hz. Calculate phase, current and power in the circuit.

OR

9. Using superposition theorem, determine current in 3 Ω resistance.

10. For following circuit, what should be value of R_L for maximum power transfer and calculate the value of power for the following circuit.

- 11. What is an isolated conductor? Derive the capacitance of an isolated spherical conductor of radius 2R and charge Q/4.
- 12. Explain the behaviour of a dielectric material when it is placed in a uniform electric field between the two plates of a capacitor.

- 13. Derive the expression for Gauss's law. What are the two forms of the law?
- 14. Derive the Electric field for a spherical shell of inner radius a and outer radius b, using Gauss law for the following three regions:
 - a. r < a
 - b. a < r < b
 - c. r > b
- 15. Solve the following:
- (a) The potential of a certain charge configuration is expressed by $V = 2x + 12y^2 + 2yz$. Find the electric field intensity at (2, 2, 1).
- (b) Suppose a point charge +q is held at a distance d above an infinite grounded conducting plane connected to earth.
 - (i) What is the potential in the region above the plane?
 - (ii) Two semi-infinite grounded conducting planes meet at right angles. In the region between them, there is a point charge q. What is the potential?
- 16. How uniqueness theorem is applied for conductors. Differentiate between Poisson's and Laplace equation. How does Poisson's equation behave for a conductor?