DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, second Semester, 2017 School of Physical Sciences

M.Sc. (Mathematics)

Course: MAC-454: Measure & Integration

Time Allowed: 2 Hours

Maximum Marks: 60

Note:

- 1. Attempt all Questions from Sections A.
- 2. Attempt any five Questions from Sections B.
- 3. Attempt any three Questions from Sections C.

SECTION: A

 $(6 \times 1 = 6 \text{ Marks})$

- 1. If A is a countable, then outer measure of A i.e. $m^*(A) =$
- 2. If C denote the Cantor set, then the exterior measure of C is
- 3. If α_0 being finite cardinal number, then $\alpha_0 + 1 = \dots$
- 4. A set E is measurable iff for any set A....
- 5. If A_i is countable infinite set, then $\bigcup_{i\in\mathbb{N}}A_i$ is and n $\alpha_0=...$
- 6. A property is said to hold almost everywhere (abbreviated a.e.) if the set of points where it _____fails-to-hold-is-a-set-of.....

SECTION: B

 $(5 \times 6 = 30 \text{ Marks})$

- 1. Define interior and exterior measure of a set and prove that $m_e(A) \geq m_i(A)$.
- 2. Show that a continuous function defined over a measurable set is measurable.
- 3. If f and g are measurable functions defined on a measurable set E, then show that |f| and $\frac{f}{g}$ (g vanish nowhere on E) are measurable over E.
- 4. Prove that a.a = a, where a being cardinal number of \mathbb{N}
- 5. A function f is measurable iff the set $\{x: f(x) < r\}$ is measurable for every rational number r.
- 6. Show that the set of all rational numbers is countable.

SECTION: C

 $(3 \times 8 = 24 \text{ Marks})$

- 1. If E_1 and E_2 are measurable subsets of [a,b], then prove that $m(E_1) + m(E_2) = m(E_1 \cup E_2) + m(E_1 \cap E_2)$.
- 2. Suppose that $\langle E_n \rangle$ is a monotonic increasing sequence and E is their limiting sum then show that $m(E) = Lim_{n\to} m(E)$.
- 3. If $E_1, E_2, ...$ are disjoint measurable sets and $E = E_1 + E_2 + ...$ Show that E is measurable and $m(E) = \sum_{k=1}^{\infty} m(E_k)$.
- 4. Construct Cantor set and prove that it is measurable and find its measure.