

School of Environment & Natural Resources (SENR)

Mid-Semester 2017 M.Tech. IInd Sem

ETC - 597: Environmental System Analysis and Modelling

Max Marks: 30

Time: 2 hours

Section A: Answer any FIVE of the followings.

(2 Marks each)

- Describe different conditions of atmospheric stability. Explain mixing height and ventilation coefficient.
- 2. What is plume rise? How can it be estimated?
- 3. What is the difference between Lagrangian and Eulerian frame of reference? Describe their applications with examples.
- 4. Explain Line and Area source dispersion model.
- 5. How does the Low pressure system and High pressure system affect Boundary layer height? Explain.
- 6. How does the pressure vary with altitude? Explain and obtain the hypsometric equation.
- 7. What is potential temperature? How does it relate to atmospheric stability?

Section B: Answer any FOUR of the following:

(5 Marks each)

- 8. Explain with a neat diagram what the point-source Gaussian Plume model is. What is the significance of Gaussian dispersion coefficients σ_y and σ_z ?
- 9. What is boundary layer height? How is the boundary layer formed? Explain different layers of boundary layer. Which are the dominant forces in boundary layer worth to be considered?
- 10. What is equation of state for an ideal gas? How does it get modified in the presence of water vapour? Explain virtual temperature in this context.
- 11. Which are the fundamental forces governing the dynamics of the atmosphere? Derive an expression for the pressure gradient force.
- 12. What is continuity equation of air? Show that continuity equation is given by

$$\frac{\partial N}{\partial t} + \nabla \cdot (\mathbf{v}N) = 0$$

where N is the no. concentration of gas molecules. Other symbols have their usual meaning.

- 13. Discuss the aerosol transport and effect over Himalayan region.
- 14. Describe any one air quality model based on either Lagrangian frame of reference or Eulerian frame of reference.