

DOON UNIVERSITY, DEHRADUN

Mid Semester Examination, 2017

School of Environment & Natural Resources

M.Sc. (EVS & NRM), Hand Semester

Course: EES - 618: Analytical Techniques & Instrumentations

Time Allowed: 2 Hours Maximum Marks: 30

Note: Attempt All Questions from Sections A, B, C

SECTION: A (Short Answer Type Questions/ to be answered in about max 50 words).

Attempt any Ten questions.

(Marks: $1.0 \times 8 = 10$)

- 1. Complexometric Titration is a qualitative technique. (true/false)
- 2. The conductivity is used to measure in a water sample.
- is a classical analytical technique to detect the presence of certain elements, primarily metal ions,
 based on each element's characteristic emission spectrum.
- 4. What is mean deviation?
- 5. In complexometric titration, the EDTA is a
- 6. What are buffers, give their classification.
- 7. Differentiate between accuracy and precision.
- 8. What is the effect of dilution on specific conductance?
- 9. List three advantages of modern analytical techniques over classical techniques.
- 10. Write two environmental application of acid-base titration.
- 11. Give an example of personal error.

SECTION: B (Short Answer Type Questions to be answered in about 100 words). Attempt any FOUR questions.

(Marks: 2.5 x 4=10)

- 1. Discuss the importance of qualitative and quantitative techniques with examples.
- 2. Write a note on Indicators, and their role in Acid -base titration, with examples.
- 3. Why conductivity is sensitive to temperature?
- 4. Calculate the mean and the standard deviation of the following set of analytical results: 15.67, 15.69, and 16.03 g.
- 5. Why multidented complexing agents are better?

SECTION: C (Medium Answer Type Questions to be answered in about 150 words). Attempt any TWO questions.

(Marks: $5 \times 2 = 10$)

1. Consider following titration reaction:

 H_2SO_4 (analyte) + NaOH (titrant) \rightarrow H_2O (1) + Na₂SO₄ (aq)

Draw a titration curve between solution pH and volume of NaOH added.

- 2. Classify different types of errors with examples and ways of their minimisation.
- 3. Explain the application and procedure of Kjeldahl method.