

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First Semester, 2015

School of Physical Sciences

Physics core test paper of 5 Years (Integrated) MSc Programmes

Course: PHC-102: Mechanics Core

Time Allowed: 3Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A,B, and C.

SECTION: A (Marks: $1 \times 6 = 6$)

- 1. What is the radius of gyration?
- 2. What do you understand by gravity and acceleration due to gravity?
- 3. What are elastic constants? Write down the dimensions of Poisson's ratio.
- 4. What are damped oscillations?
- 5. What is the reduced mass of O_2 molecule?
- 6. Define ultimate tensile strength and breaking point for stainless steel.

SECTION: B Attempt any four questions. (Marks: $3 \times 4 = 12$)

- 1. Explain the theorem of parallel axes on moment of inertia. Derive the moment of inertia of the whole disc about an axis.
- 2. Show that the ratio of rotational to translation kinetic energy for a solid cylinder rolling down a plane without slipping is 1:2.
- 3. Derive the work done per unit volume in volumetric strain. What force is required to stretch a steel wire of half square c.m. in cross-section to double its length? Given $Y = 2 \times 10^{11} \text{ N/m}^2$.
- 4. Explain the energy of simple harmonic oscillator. Express your illustrations with suitable graph. Mention the drawbacks of simple pendulum.
- 5. (i) Define conservative force.
 - (ii) Two particles, having the positions $r_1 = (3i + 5j)m$ and $r_2 = -(5i + 3j)m$ move with velocities $v_1 = (4i + 3j)$ m/s and $v_2 = (9i + 7j)$ m/s.
 - (a) Find the value of a, if they collide.
 - (b) When and where the collision will take place?
- 6. (i) What is a compound pendulum? How does a compound pendulum differs from simple pendulum?
 - (ii) What is the displacement to amplitude ratio of S.H.M when K.E. is 80% of total energy.

SECTION: C (Marks: 6 X 2 = 12)

- 1. (i) Write down the hypothesis of Galilean invariance
 - (ii) Two bodies of masses M₁ and M₂ are placed distant d apart. Show that at the position, where the gravitational field due to them is zero, the potential is given by

$$V = -\frac{G}{d}(M_1 + M_2 + 2\sqrt{M_1 M_2})$$

- 2. (i)What do you understand by torsional rigidity?
 - (ii) Derive the couple required to twist a cylindrical.
 - (iii) A solid cylinder of radius 5 cm is converted in to a hollow cylinder of same mass and length and external radius 7 cm. If the restoring couple per unit radian twist in original cylinder is C, deduce the same for the new hollow cylinder.