

## DOON UNIVERSITY, DEHRADUN

## End Semester Examination, First Semester, 2015 Department of Physics, School of Physical Sciences

M.Sc. Physics (Integrated) 5 Years

Course: PHC-101: Mathematical Physics - I

Time Allowed: 3 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A,B,C.

**SECTION: A** 

Attempt All Questions.

 $(Marks: 1 \times 6 = 6)$ 

- 1. Find out the differential of the function  $f(x, y) = y \exp(x + \tan^{-1} y)$
- 2. What are the point of discontinuity of the function  $1/\{\exp(\sin(\log x))-1\}$
- 3. Find out the first and second order partial derivatives of the function  $f(x,y)=2x^3y+y^3$
- 4. Show whether the below differential is exact or inexact: (y + z)dx + xdy + 3xdz
- 5. Differentiate the vector  $\vec{r}(t) = 2t^2\hat{i} + (3t-2)\hat{j} + (3t^2-1)\hat{k}$  with respect to t. Find out the angle between vector and its derivative at t = 1.
- **6.** Find out the curl of the vector field of the vector  $\vec{a} = x^2 y^2 z^2 \hat{i} + y^2 z^2 \hat{j} + x^2 z^2 \hat{k}$

**SECTION:** B Attempt All Questions.

(Marks:  $3 \times 4 = 12$ )

- 7. Express the spherical polar coordinates in terms of Cartesian coordinates. Also, express the unit vectors of spherical polar coordinates in terms of  $\hat{i}$ ,  $\hat{j}$  and  $\hat{k}$ . Hence, express the volume element in spherical polar coordinates.
- 8. Find out the solution and the Wronskian of the following second order differential equation:  $\frac{d^2y}{dx^2} + 3y = 0$
- 9. Prove the Green's theorem in two dimensions.
- 10. Prove that the two sets of basis vectors  $\{\vec{e}_i\}$  and  $\{\vec{e}_i\}$  are reciprocal sets in curvilinear coordinate system corresponding to contravariant and covariant components, respectively.

SECTION: C Attempt All Questions.

(Marks: 4X 3=12)

11. Establish the unit vector formalism of curvilinear coordinates. Hence, express the vector displacement dr, length-element ds<sup>2</sup> and volume element dV. Also, write the expression for gradient of a quantity  $\varphi$  in terms of curvilinear coordinate system vectors.

- 12. Find the stationary points of the function  $f(x,y,z) = x^3 + y^3 + z^3$ , subject to the constraint  $g(x,y,z) = x^2 + y^2 + z^2 = 1$
- 13. Evaluate the line integral  $I = \int_C \vec{a} \cdot d\vec{r}$ , where  $a = (x+y)\hat{i} + (y-x)\hat{j}$  along each of the

paths in the xy-plane:

- (a) The parabola  $y^2 = x$  from (1,1) to (4,2).
- (b) The curve  $x = 2u^2 + u + 1$  and  $y = 1 + u^2$  from point (1,1) to (4,2)
- (c) The line y = 1 from (1,1) to (4,1) and then line x = 4 from (4,1) to (4,2)