

### DOON UNIVERSITY, DEHRADUN

# Final Semester Examination, First Semester, 2015 School of Physical Sciences

Class: M.Sc. Mathematics

Semester: I

Course: Finite Fields

Course Code: MAC-401

Time Allowed: 3Hours

Maximum Marks: 100

Note: Attempt all six questions in Section A. Each question carries 3 marks.

Attempt any four questions in Section B. Each question carries 10 marks.

Attempt any three questions in Section C. Each question carries 14 marks.

### SECTION: A (Very Short Answer Type Questions)

(Marks: 6X3=18)

- 1. If H and K are two subgroups of a group G, then  $H \cup K$  is a subgroup of G if and only if either  $H \subset K$  or  $K \subset H$ .
- 2. Prove that every field is an integral domain.
- 3. Find all maximal ideals of  $Z_{12}$ .
- 4. Prove that every field is a P.I.D. Is the converse true?
- 5. Show that if R is an integral domain then R[x] is an integral domain.
- 6. Define the followings:
  - a. Primitive polynomial
  - b. Reducible and Irreducible polynomials
  - c. Characteristic of an integral domain
  - d. Conjugate element in a group

#### **SECTION: B**

#### (Short Answer Type Questions)

(Marks: 4X10=40)

- 1. If G is a finite group, then  $o[c(a)] = \frac{o(G)}{o(N(a))}$
- 2. Prove that H is a normal subgroup of a group G iff the product of any two right cosets of H in G is a right coset of H in G.
- 3. Find all abelian groups, up to isomorphism, of order 720.
- 4. The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring of R are
  - i.  $a \in S, b \in S \Rightarrow a b \in S$
  - ii.  $a \in S, b \in S \Rightarrow ab \in S$
- 5. If  $f(x) = x^5 + 2x^3 + x^2 + 2x + 3$  and  $g(x) = x^4 + x^3 + 4x^2 + 3x + 3$ , then find the g.c.d. of f(x) and g(x) over  $Z_5[x]$  and express it in the form of  $m(x) \cdot f(x) + n(x) \cdot g(x)$ .

## SECTION: C (Long Answer Type Questions)

(Marks: 3X14=42)

- 1. If H and K are two subgroups of a group G, then  $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$
- 2. If R is a commutative ring with unity, then prove that an ideal M of R is maximal ideal iff R/M is a field.
- 3. If f is a homomorphism of G onto G' with kernel K, then prove that  $\frac{G}{K} \approx G'$ .
- 4. Prove that every Euclidean domain is a Principal ideal domain.