

# DOON UNIVERSITY, DEHRADUN

# End Semester Examination, Third Semester, 2015 School of Technology

## Integrated M.C.A.

Course: STM - 521 Introduction to Information Security and Cyber Laws

Time Allowed: 3Hours

Maximum Marks: 50

SECTION: A (Short Answer Type Questions/to be answered in about 25 words)

#### **Attempt All Questions**

(Marks:  $2 \times 5 = 10$ )

- 1. Define the term encryption.
- 2. What is a symmetric key?
- 3. Write down two private key cryptographic algorithms.
- 4. What is the cyber crime?
- 5. What is the Digital signature?

SECTION: B (Short Answer Type Questions/to be answered in about 100 words)

### **Attempt Any 4 Questions**

(Marks:  $5 \times 4 = 20$ )

- 1. Write down the need of cyber law.
- 2. Explain how a cryptographic scheme works between a sender and receiver. Illustrate using proper diagram.
- 3. Write down the privacy concerns of cyber security.
- 4. Write a note on IT-Act 2008.
- 5. How a private communication can be made in a public world? Explain on a cryptographic perspective.

SECTION: C (Long Answer Type Questions to be answered in about 300 words)

# Attempt All Questions

(Marks:  $10 \times 2 = 20$ )

- 1. Describe RSA algorithm. Using the public-key (e,n)=(7,15), encrypt the message 'a' and find the encrypted message. Use ASCII set as standard for input message.
- 2. What are various cyber attacks? What is the need of considering ethical issues involved in cyber security?



# DOON UNIVERSITY, DEHRADUN

# End Semester Examination, Third Semester, 2015 School of Technology

# Integrated M.C.A.

Course: STM - 519 Data Structures using 'C' or 'C++'

Time Allowed: 3Hours

Maximum Marks: 50

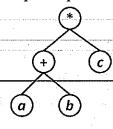
SECTION: A (Short Answer Type Questions/to be answered in about 25 words)

#### **Attempt All Questions**

(Marks:  $2 \times 5 = 10$ )

- 1. Define a sparse matrix with an example.
- 2. Create a node of a BST using C language.
- 3. What is a hash table?
- 4. Define a weighted graph with example.
- 5. Write the recursive function to print a linked list in reverse order.

SECTION: B (Short Answer Type Questions/to be answered in about 100 words)

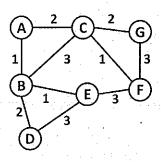

#### **Attempt Any 4 Questions**

(Marks:  $5 \times 4 = 20$ )

- 1. Generate a BST for following data and search the element 9 in the generated tree by showing all the steps: 4, 7, 2, 15, 3, 9, 10, 16.
- 2. Write the function for any sorting algorithm in C language.
- 3. Create a B tree of order 3 for following data: 13, 18, 19, 17, 15, 24, 26.
- 4. Draw the graph for following adjacency matrix:

|   | a | b           | $\boldsymbol{c}$ | d  | e  |
|---|---|-------------|------------------|----|----|
| a |   | <del></del> | 1                | 0  | 0  |
| b | 1 | .0          | . 0              | 0  | 1  |
| с | 1 | 0           | 0                | Ò  | 1  |
| d | 0 | 0           | 0                | 0  | 0  |
| e | 0 | 1           | 1                | 0: | 0. |

5. Consider following expression tree. Visit the tree using DFS manner starting from the root. How is this visit related to infix/prefix/postfix expression of the expression tree?




# SECTION: C (Long Answer Type Questions to be answered in about 300 words)

### Attempt All Questions

(Marks:  $10 \times 2 = 20$ )

- 1. Generate two stacks  $S_1$  and  $S_2$  of 4 elements each. Write the function for push and pop operations. Now using dynamic memory allocation, create another stack  $S_3$  and push the elements of  $S_1$  and  $S_2$  into  $S_3$  such that  $S_3$  contains elements from  $S_1$  followed by the elements form  $S_2$  in an alternative manner. Write appropriate functions in C language.
- 2. Find out the minimum spanning tree from following graph. Now write a recursive function using C language to visit the resulting tree in post order manner by considering the node A as root of the resultant tree. What is the postorder sequence?



(End of the Question Paper)