

DOON UNIVERSITY, DEHRADUN

Final Semester Examination, First Semester, 2015 School of Technology

Class: M.C.A.

Course: CBNST

Semester: III

Course Code: STM-518

Time Allowed: 3Hours

Maximum Marks: 60

Note: Attempt all six questions in Section A.Each question carries 2 marks.

Attempt any four questions in Section B. Each question carries 6 marks.

Attempt any three questions in Section C. Each question carries 8 marks.

SECTION: A (Very Short Answer Type Questions)

(Marks:6X2=12)

- 1. Find the real root of the equation $x^2 + 4 \sin x = 0$ correct to three decimal places by using Newton's Raphson method.
- 2. Solve the following system of equation using Crout's method.

$$5x + 2y = 16$$
$$3x - y = 3.$$

- 3. If y' = x + y, y(0) = 1 then by Picard's method, the value of $y^{(2)}(x)$ is......
- 4. Estimate the missing term in the following table:

	<i>x</i> ·	0	1	2	3	4
-	f(x)	1	3	9		81

- 5. Show that $\Delta \nabla = \Delta \nabla$.
- 6. If f(0) = 1, f(1) = 2.7, f(2) = 7.4, f(3) = 20.1, f(4) = 54.6 and h = 1, then the value of $\int_0^4 f(x) dx$ by Simpson's $\frac{1}{3}$ rd rule is.........

SECTION: B

(Short Answer Type Questions)

(Marks: 4X6=24)

- 1. Find a root of the equation $x^3 2x 5 = 0$ using secant method correct to three decimal places.
- 2. Given the values:

x	654	658	659	661
f(x)	2.8156	2.8182	2.8189	2.8202

evaluate f (656) using Lagrange's interpolation formula.

3. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 50 from the following table:

х	50	51	- 52	53	54	-55	56
f(x)	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

- 4. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2.
- 5. Using Milne's predictor-corrector method find y(4.4) given $5xy' + y^2 2 = 0$ and y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143.

SECTION: C

(Long Answer Type Questions)

(Marks: 3X8=24)

1. Derive Gauss forward central difference interpolation formula and using it, find the value of f(1.17) using following data.

X	1.00	1.05	1.10	1.15	1.20	1.25	1.30
f(x)	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

2. Solve the following by Euler's modified method:

$$\frac{dy}{dx} = \log(x + y)$$
, $y(0) = 2atx = 1.0$ with $h = 0.2$.

- 3. Derive general Newton-cotes quadrature formula. Also evaluate $\int_0^{1.5} e^{-x^2} dx$ using
 - (i) Trapezoidal's rule (ii) Simpson's $\frac{1}{3}$ rd ruleand (iii) Simpson's $\frac{3}{8}$ rule.
- 4. Solve the following system of linear equations by Gauss-Jacobi method correct to three decimal places.

$$27x + 6y - z = 85$$

$$x + y + 5z = 110$$

$$6x + 15y + 2z = 72$$
.