

DOON UNIVERSITY, DEHRADUN

End Semester Examination, Second Semester, 2016-17 School of Physical Sciences

Core Physics 5 Years (Integrated) MSc Programmes Course: PHC-102: Mechanics

Time Allowed: 3 Hours

Maximum Marks: 30

Note: Attempt All Questions from Sections A and B. There is choice in section C.

SECTION: A

(Marks: 2X4 = 8)

- 1. Give two examples to illustrate the law of conservation of linear momentum with explanation.
- 2. With what velocity should a rocket move so that every year spent on it corresponds to four years on earth?
- 3. What is damping? On what factors the damping depends?
- 4. State the postulates of special theory of relativity.

SECTION: B

(Marks: $4 \times 3 = 12$)

- 5. (a) What do you mean by angular momentum. Explain the geometrical meaning of angular momentum.
 - (b) Calculate the work done per unit volume of a body for volumetric strain.
- 6. Differentiate between simple harmonic oscillator, damped oscillator and driven oscillator. Prove that total energy of a simple harmonic oscillator is constant.
- 7. Discuss fully the Michelson -Morley experiment with important results obtained from it.

SECTION: C (Attempt any part from e or f)

(Marks: 10)

- 8. Solve the following parts:
- (a) A solid cylinder of radius 5 cm is converted into a hollow cylinder of same mass and length and external radius 7 cm. If the restoring couple per unit radian twist in original cylinder, is C, deduce the same for the new hollow cylinder.
- (b) A particle is subjected to a central force $F = Ae^{-\alpha r}$ where A and α are constants. Calculate the potential energy associated with force.
- (c) A particle of mass 100 gm is placed in a field of potential $U = 5x^2 + 10$ ergs/gm. Find the frequency.
- (d) A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s⁻¹. The radius of cylinder is 0.25 m. What is kinetic energy associated with its rotation?
- (e) State Kepler's law of planetary motion.

(f) Obtain the formula for relativistic length contraction.