

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First Semester, 2016

School of Physical Sciences M.Sc.(Mathematics) Course: MAC-401: Finite Field

Time Allowed: 3 Hours

Maximum Marks: 100

Note:

1. Attempt All Questions from Sections A.

- 2. Attempt Any seven Questions from Sections B.
- 3. Attempt Any three Questions from Sections C.

SECTION: A

 $(10 \times 2 = 20 \text{ Marks})$

- 1. The minimal polynomial for $\sqrt[3]{2}$ over Q is ... and is of degree ... over Q.
- 2. If $Q(\xi_p)$ is cyclotomic field of p^{th} roots of unity, where p is prime, then $[Q(\xi_p):Q]=\dots$
- 3. Define seprable polynomial over a field F.
- 4. Let F be a field of characteristic p. Then for any $a, b \in F$. We have $(a+b)^p = \dots$ and $(ab)^p = \dots$
- 5. Define characteristic of a field.
- 6. Define multiplicity of an element a of field K.
- 7. Let C be the field of complex numbers is algebric over R, then [C:R]= and are basis of C over R.
- 8. Let K_1 and K_2 be two finite extensions of a field F contained in K. Then $[K_1K_2:F]....[K_1:F][K_2:F]$.
- 9. A generator of a cyclic group of all n^{th} roots of unity is called
- 10. An element $a \in F_p$ is a primitive n^{th} roots of unity if and only if

SECTION: B

 $(7 \times 5 = 35 \text{ Marks})$

- 1. Show that the algebric closure of a countable field is countable.
- 2. Show that a finite normal extension is a minimal splitting field of some polynomial.
- 3. Show that a finite extension is algebric, however the converse is not true.
- 4. Show that $x^{p^n} x$ is the product of monic irreducible polynomials in $F_p[x]$ of degree d,d dividing n.
- 5. Prove that $sinm^0$ is an algebric number for every integer m.
- 6. Find a basis of $Q(\sqrt{3}, \sqrt{5})$ over Q.
- 7. Prove that 60° is constructable.
- 8. Find the smallest splitting field of $x^4 + 2$ over Q.Also find its degree over Q.

SECTION: C

 $(15 \times 3 = 45 \text{ Marks})$

- 1. Let K be a finite extension of F and L, a finite extension of K. Then show that L is a finite extension of F and [L:F] = [L:K][K:F].
- Let a ∈ K be algebric over F. Then show that

 (a) there exist a unique monic irreducible polynomial p(x) ∈ F[x] such that p(a) = 0,
 (b) if there exist a nonzero polynomial q(x) ∈ F[x] such that q(a) = 0 then p(x) divides q(x).
- 3. Let $f(x) \in F[x]$ be of degree $n \ge 1$. Then there exist an extension K of F such that $[K:F] \le n!$ and K has n roots of f(x).
- 4. Let F be a field of characteristic p. Then show that for any polynomial $f(x) \in F[x]$, f' = 0 iff $f(x) = g(x^p)$ for some polynomial $g(x) \in F[x]$.