

DOON UNIVERSITY, DEHRADUN

End Semester Examination, Third Semester, 2016

School of Physical Sciences Integrated M.Sc. (Mathematics) Course: MAC-106: Group Theory

Time Allowed: 3 Hours

Maximum Marks: 100

Note:

1. Attempt All Questions from Sections A.

2. Attempt Any seven Questions from Sections B.

3. Attempt Any three Questions from Sections C.

SECTION: A

 $(13 \times 1 = 13 \text{ Marks})$

- 1. The number of generator of a finite cyclic group of order 8 is
- 2. According to Fermat's theorem: If p is prime and a is any integer, then
- 3. The product of an odd permutation and an even permutation is an permutation.
- 4. If $H = \{I, (1,2)\}$ and $K = \{I, (13)\}$ are two subgroups of a group $G = S_3$, then HK is of $G = S_3$.
- 5. A group G of order 2p, where p is prime and p > 2 has exactly subgroups of order p.
- 6. A subgroup N of a group G is said to be a normal subgroup of G if for each $g \in G$ and $n \in N$.
- 7. Let G and G' be two groups under multiplication. If $f: G \to G'$ be a homomorphism, then f is one-one iff
- 8. The number of generators of an infinite cyclic-group is
- 9. A finite cyclic group of order n is isomorphic to
- 10. If a group G has no non-trivial subgroups, then G must be finite group of order.
- 11. If H is a subgroup of G and N is a normal subgroup of G then what about the $H \cap N$ and H?
- 12. If a mapping $f:(C,+)\to (R,+)$ defined by f(x+iy)=x is a homomorphism. Then the kernel of f is
- 13. A permutation $\sigma = (123)(45)(16789)(15)$ is permutation.

SECTION: B

 $(7 \times 6 = 42 \text{ Marks})$

- 1. Show that the centre of a group is a normal subgroup of that group.
- 2. Define kernel of a homomorphism and show that if $f: G \to G'$ is a homomorphism then kernel of f is a normal subgroup of G.
- 3. If H and K are two subgroups of a group G, show that $H \cup K$ is a subgroup of group of G iff either $H \subset K$ or $K \subset H$.
- 4. If Z is the centre of a group G such that $\frac{G}{Z}$ is cyclic, then show that G is abelian.
- 5. If G is a group of order 35. Show that it cannot have two subgroups of order 7.
- 6. if A_3 be the subgroup of group S_3 consisting of all-even permutations show that A_3 is normal subgroup of S_3 , and order of A_3 is half of the order of S_3 .
- 7. Prove that any two right cosets of H in G are either identical or disjoint, H being a subgroup of G.
- 8. If $G = \langle a \rangle$ be a finite cyclic group of order n, then show that a^m is a generator of G iff 0 < m < n and (m, n) = 1.

SECTION: C

 $(15 \times 3 = 45 \text{ Marks})$

- 1. Define Quotient groups and show that if G is abelian group and N is normal subgroup of G then $\frac{G}{N}$ is abelian, however the converse need not be true.
- 2. State and prove Cayley's theorem.
- 3. State and prove of the Fundamental theorem of homomorphism.
- 4. Show that the set A_n of all even permutations of S_n is a normal subgroup of S_n and $o(A_n) = \frac{n!}{2}$.