

DOON UNIVERSITY, DEHRADUN

End Semester Examination, First Semester, 2016-17 School of Physical Sciences

Class: Integrated M.Sc. Mathematics

Semester: II

Course: Theory of Real Functions

Course Code: MAC-105

Time Allowed: 3Hours

Maximum Marks: 100

Note: Attempt all six questions in Section A. Each question carries 3 marks.

Attempt any six questions in Section B. Each question carries 7 marks.

Attempt any four questions in Section C. Each question carries 10 marks.

SECTION: A

(Very Short Answer Type Questions)

(Marks: 6X3=18)

- 1. Define the following terms:
 - (a) ε-δ definition of continuity
 - (b) uniform continuity
 - (c) left and right hand limits.
- 2. If a function f is continuous on a closed and bounded interval [a, b], then prove that it is bounded in [a, b].
- 3. Prove that continuity is a necessary condition but not a sufficient condition for the existence of a finite derivative.
- 4. State Cauchy's mean value theorem and verify it for $f(x) = \sin x$, $g(x) = \cos x$ in $[-\pi/2, 0]$.
- 5. Find the values a, b, c so that $\lim_{x\to 0} \frac{ae^x b\cos x + ce^{-x}}{x\sin x}$ may be equal to 2.
- 6. Find the maximum and minimum values of the function $f(x) = 12x^5 45x^4 + 40x^3 + 6, x \in \mathbb{R}.$

SECTION: B

(Short Answer Type Questions)

(Marks: 6X7=42)

- 7. State and prove sequential criterion for continuity.
- 8. If $f:(0,\infty)\to R$ is a function defined by $f(x)=\frac{1}{x}$, prove that f is uniformly continuous on $[a,\infty)$ where a>0. Show that f is continuous but not uniformly on $(0,\infty)$.
- 9. The function f defined by $f(x) = \begin{cases} x^2 + 3x + a, & \text{if } x \leq 1 \\ bx + 2, & \text{if } x > 1 \end{cases}$ is given to be differentiable for every x. Find a and b.
- 10. State and prove Rolle's theorem.
- 11. Assuming the validity of expansion, show that $\sin(e^x 1) = x + \frac{x^2}{2!} + \frac{5x^{43}}{4!} + \cdots$
- 12. If 0 < x < 1, show that $2x < \log \frac{1+x}{1-x} < 2x \left(1 + \frac{x^2}{3(1-x^2)}\right)$.
- 13. Let I be an open interval and let $f: I \to R$ have a second derivative on I, then prove that f is convex if and only if $f''(x) \ge 0 \ \forall x \in I$.

SECTION: C (Long Answer Type Questions)

(Marks: 4X10=40)

- 14. Discuss the classification of discontinuities of a function with suitable examples.
- 15. State and prove (a) Caratheodory's and (b) Darboux's theorems.
- 16. State and prove Lagrange's Mean value theorem and examine its validity for the function $f(x) = x \sin x$ in the interval $\left[0, \frac{\pi}{2}\right]$.
- 17. State and prove Taylor's theorem with Lagrange's form of remainder. Also, show that $x \frac{x^3}{3!} \le \sin x \le x$, $x \ge 0$.
- 18. State and prove the necessary and sufficient conditions for the existence of maxima and minima of a function based on its first derivative.